scholarly journals Hybrid Multilevel Converters: Topologies, Evolutions and Verifications

Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 615 ◽  
Author(s):  
Jianzhong Zhang ◽  
Shuai Xu ◽  
Zakiud Din ◽  
Xing Hu

Multilevel converters have good potential in high power and high voltage applications due to their advantages of reduced voltage or current stress on power devices. In recent years, hybrid multilevel converter (HMC) have attracted increasing attention since less equipment is required. In this paper, the topologies and evolutions of HMCs are presented, where five topology derivation ways are given by using basic cells in series-parallel/parallel-series. Some general topologies or structures that are used to generate higher levels are also deducted. Then many existing HMCs can be derived, and new topologies of the HMC might be inspired. The capabilities of neutral point and FC voltage balancing control are investigated. The performance of the selected FC-based HMCs is analyzed. Finally, the verifications of operation principle and control strategies for the derived HMCs are carried out.

Author(s):  
Polu Veera Pratap ◽  
S. Sridhar

Multilevel inverters have been widely used for high-voltage and high-power applications. Their perf0rmance is greatly superi0r t0 that 0f c0nventi0nal tw0-level inverters due t0 their reduced t0tal harm0nic dist0rti0n (THD),. This t0p0l0gy requires fewer c0mp0nents when c0mpared t0 di0de clamped, flying capacit0r and Bridgeless cascaded inverters and it requires fewer carrier signals and gate drives. Theref0re, the 0verall c0st and circuit c0mplexity are greatly reduced. This paper presents a n0vel reference and multicarrier based PWM scheme It als0 c0mpares the perf0rmance 0f the pr0p0sed scheme with that 0f c0nventi0nal cascaded bridge less rectifier (CBR) multilevel inverters. finally Simulati0n results fr0m MATLAB/SIMULINK are presented t0 verify the perf0rmance 0f the Five-level Multilevel Inverter


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1653
Author(s):  
Ioan-Cătălin Damian ◽  
Mircea Eremia ◽  
Lucian Toma

The concept of high-voltage DC transmission using a multiterminal configuration is presently a central topic of research and investment due to rekindled interest in renewable energy resource integration. Moreover, great attention is given to fault analysis, which leads to the necessity of developing proper tools that enable proficient dynamic simulations. This paper leverages models and control system design techniques and demonstrates their appropriateness for scenarios in which faults are applied. Furthermore, this paper relies on full-bridge submodule topologies in order to underline the increase in resilience that such a configuration brings to the multiterminal DC network, after an unexpected disturbance. Therefore, strong focus is given to fault response, considering that converters use a full-bridge topology and that overhead power lines connect the terminals.


2013 ◽  
Vol 2013 ◽  
pp. 1-12
Author(s):  
Qiang Jiaxi ◽  
Yang Lin ◽  
He Jianhui ◽  
Zhou Qisheng

Batteries, as the main or assistant power source of EV (Electric Vehicle), are usually connected in series with high voltage to improve the drivability and energy efficiency. Today, more and more batteries are connected in series with high voltage, if there is any fault in high voltage system (HVS), the consequence is serious and dangerous. Therefore, it is necessary to monitor the electric parameters of HVS to ensure the high voltage safety and protect personal safety. In this study, a high voltage safety monitor system is developed to solve this critical issue. Four key electric parameters including precharge, contact resistance, insulation resistance, and remaining capacity are monitored and analyzed based on the equivalent models presented in this study. The high voltage safety controller which integrates the equivalent models and control strategy is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated, and the online electric parameters monitor strategy is analyzed and discussed. The test results indicate that the high voltage safety monitor system designed in this paper is suitable for EV application.


Sign in / Sign up

Export Citation Format

Share Document