scholarly journals Structural Analysis of Large-Scale Vertical Axis Wind Turbines Part II: Fatigue and Ultimate Strength Analyses

Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2584 ◽  
Author(s):  
Jinghua Lin ◽  
You-lin Xu ◽  
Yong Xia

Vertical axis wind turbines (VAWTs) exhibit many advantages and great application prospect as compared with horizontal ones. However, large-scale VAWTs are rarely reported, and the codes and guidelines for designing large-scale VAWTs are lacking. Designing a large-scale composite blade requires precise finite element (FE) modeling and stress analysis at the lamina level, while precise modeling of an entire VAWT is computationally intensive. This study proposes a comprehensive fatigue and ultimate strength analysis framework for VAWTs. The framework includes load determination, finite element (FE) model establishment, and fatigue and ultimate strength analyses. Wind load determination has been presented in the companion paper. In this study, laminated shell elements are used to model blades, which are separately analyzed by ignoring the influence of the tower and arms. Meanwhile, beam elements are used to model an entire VAWT to conduct a structural analysis of other structural components. A straight-bladed VAWT in Yang Jiang, China, is used as a case study. The critical locations of fatigue and ultimate strength failure of the blade, shaft, arms, and tower are obtained.

2016 ◽  
Vol 753 ◽  
pp. 102003 ◽  
Author(s):  
D. Todd Griffith ◽  
Joshua Paquette ◽  
Matthew Barone ◽  
Andrew J. Goupee ◽  
Matthew J. Fowler ◽  
...  

2017 ◽  
Vol 139 (3) ◽  
Author(s):  
Giacomo Persico ◽  
Vincenzo Dossena ◽  
Berardo Paradiso ◽  
Lorenzo Battisti ◽  
Alessandra Brighenti ◽  
...  

In this paper, the aerodynamics of two vertical axis wind turbines (VAWTs) are discussed, on the basis of a wide set of experiments performed at Politecnico di Milano, Milan, Italy. A H-shaped and a Troposkien Darrieus turbine for microgeneration, featuring the same swept area and blade section, are tested at full-scale. Performance measurements show that the Troposkien rotor outperforms the H-shaped turbine, thanks to the larger midspan section of the Troposkien rotor and to the nonaerodynamic struts of the H-shaped rotor. These features are consistent with the character of the wakes shed by the turbines, measured by means of hot wire anemometry on several surfaces downstream of the models. The H-shape and Troposkien turbine wakes exhibit relevant differences in the three-dimensional morphology and unsteady evolution. In particular, large-scale vortices dominate the tip region of the wake shed by the H-shape turbine; these vortices pulsate significantly during the period, due to the periodic fluctuation of the blade aerodynamic loading. Conversely, the highly tapered shape of the Troposkien rotor not only prevents the onset of tip vortices, but also induces a dramatic spanwise reduction of tip speed ratio (TSR), promoting the onset of local dynamic stall marked by high periodic and turbulent unsteadiness in the tip region of the wake. The way in which these mechanisms affect the wake evolution and mixing process for the two classes of turbines is investigated for different tip speed ratios, highlighting some relevant implications in the framework of wind energy exploitation.


Author(s):  
L. Battisti ◽  
L. Zanne ◽  
S. Dell’Anna ◽  
V. Dossena ◽  
B. Paradiso ◽  
...  

This paper presents the first results of a wide experimental investigation on the aerodynamics of a vertical axis wind turbine. Vertical axis wind turbines have recently received particular attention, as interesting alternative for small and micro generation applications. However, the complex fluid dynamic mechanisms occurring in these machines make the aerodynamic optimization of the rotors still an open issue and detailed experimental analyses are now highly recommended to convert improved flow field comprehensions into novel design techniques. The experiments were performed in the large-scale wind tunnel of the Politecnico di Milano (Italy), where real-scale wind turbines for micro generation can be tested in full similarity conditions. Open and closed wind tunnel configurations are considered in such a way to quantify the influence of model blockage for several operational conditions. Integral torque and thrust measurements, as well as detailed aerodynamic measurements were applied to characterize the 3D flow field downstream of the turbine. The local unsteady flow field and the streamwise turbulent component, both resolved in phase with the rotor position, were derived by hot wire measurements. The paper critically analyses the models and the correlations usually applied to correct the wind tunnel blockage effects. Results evidence that the presently available theoretical correction models does not provide accurate estimates of the blockage effect in the case of vertical axis wind turbines. The tip aerodynamic phenomena, in particular, seem to play a key role for the prediction of the turbine performance; large-scale unsteadiness is observed in that region and a simple flow model is used to explain the different flow features with respect to horizontal axis wind turbines.


1995 ◽  
Vol 2 (1) ◽  
pp. 33-41 ◽  
Author(s):  
A. F. Abdel Azim El-Sayed ◽  
C. Hirsch ◽  
R. Derdelinckx

A computing package that combines finite element methods for evaluating the resonance frequencies and modes of turbine subcomponents (blade, tower and shaft) together with the aerodynamic calculations for forces and moments taking into consideration the dynamic stall as well as the dynamic response is developed. This method was applied to a realistic VAWT; namely; the PIONEER I built in the Netherlands by Fokker company. A reasonable agreement between the calculated and field results was predicted.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 422
Author(s):  
Yasser Elhenawy ◽  
Yasser Fouad ◽  
Haykel Marouani ◽  
Mohamed Bassyouni

Synthetic materials using epoxy resin and woven Kevlar fiber nanocomposites were fabricated in the presence of functionalized multiwalled carbon nanotubes (F-MWCNTs). Kevlar-reinforced epoxy nanocomposites were designed to manufacture a small blade of vertical axis wind turbines (VAWT). It is important to estimate the deflection of the versatile composite turbine blades to forestall the blades from breakage. This paper investigates the effect of F-MWCNTs on mechanics and deflection of reinforced epoxy composites. The outcomes show that the mixing of F-MWCNTs with epoxy resin using a sonication process has a significant influence on the mechanical properties. Substantial improvement on the deflections was determined based on finite element analysis (FEA). The vortices from the vertical axis wind turbines (VAWTs) blades have a negative impact on power efficiency, since small blades are shown to be effective in reducing tip vortexes within the aerospace field. To support the theoretical movement of the VAWT blade, modeling calculations and analyzes were performed with the ANSYS code package to achieve insight into the sustainability of epoxy nanocomposites for turbine blade applications below aerodynamic, gravitational, and centrifugal loads. The results showed that the addition of F-MWCNTs to epoxy and Kevlar has a significant effect on the bias estimated by finite element analysis. ANSYS analysis results showed lower deflection on the blade using epoxy with an additional of 0.50 wt.% of MWCNTs-COOH at tip speed ratios of 2.1, 2.6, and 3.1.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2573 ◽  
Author(s):  
Jinghua Lin ◽  
You-Lin Xu ◽  
Yong Xia ◽  
Chao Li

When compared with horizontal-axis wind turbines, vertical-axis wind turbines (VAWTs) have the primary advantages of insensitivity to wind direction and turbulent wind, simple structural configuration, less fatigue loading, and easy maintenance. In recent years, large-scale VAWTs have attracted considerable attention. Wind loads on a VAWT must be determined prior to structural analyses. However, traditional blade element momentum theory cannot consider the effects of turbulence and other structural components. Moreover, a large VAWT cannot simply be regarded as a planar structure, and 3D computational fluid dynamics (CFD) simulation is computationally prohibitive. In this regard, a practical wind load simulation method for VAWTs based on the strip analysis method and 2D shear stress transport (SST) k-ω model is proposed. A comparison shows that the wind pressure and aerodynamic forces simulated by the 2D SST k-ω model match well with those obtained by 2.5D large eddy simulation (LES). The influences of mean wind speed profile, turbulence, and interaction of all structural components are considered. A large straight-bladed VAWT is taken as a case study. Wind loads obtained in this study will be applied to the fatigue and ultimate strength analyses of the VAWT in the companion paper.


Energies ◽  
2016 ◽  
Vol 9 (7) ◽  
pp. 570 ◽  
Author(s):  
Senad Apelfröjd ◽  
Sandra Eriksson ◽  
Hans Bernhoff

2011 ◽  
Vol 133 (3) ◽  
Author(s):  
L. Battisti ◽  
L. Zanne ◽  
S. Dell’Anna ◽  
V. Dossena ◽  
G. Persico ◽  
...  

This paper presents the first results of a wide experimental investigation on the aerodynamics of a vertical axis wind turbine. Vertical axis wind turbines have recently received particular attention, as interesting alternative for small and micro generation applications. However, the complex fluid dynamic mechanisms occurring in these machines make the aerodynamic optimization of the rotors still an open issue and detailed experimental analyses are now highly recommended to convert improved flow field comprehensions into novel design techniques. The experiments were performed in the large-scale wind tunnel of the Politecnico di Milano (Italy), where real-scale wind turbines for micro generation can be tested in full similarity conditions. Open and closed wind tunnel configurations are considered in such a way to quantify the influence of model blockage for several operational conditions. Integral torque and thrust measurements, as well as detailed aerodynamic measurements were carried out to characterize the 3D flow field downstream of the turbine. The local unsteady flow field and the streamwise turbulent component, both resolved in phase with the rotor position, were derived by hot wire measurements. The paper critically analyses the models and the correlations usually applied to correct the wind tunnel blockage effects. Results highlight that the presently available theoretical correction models do not provide accurate estimates of the blockage effect in the case of vertical axis wind turbines. The tip aerodynamic phenomena, in particular, seem to play a key role for the prediction of the turbine performance; large-scale unsteadiness is observed in that region and a simple flow model is used here to explain the different flow features with respect to horizontal axis wind turbines.


Author(s):  
Joseph Saverin ◽  
Giacomo Persico ◽  
David Marten ◽  
David Holst ◽  
George Pechlivanoglou ◽  
...  

The evolution of the wake of a wind turbine contributes significantly to its operation and performance, as well as to those of machines installed in the vicinity. The inherent unsteady and three-dimensional (3D) aerodynamics of vertical axis wind turbines (VAWT) have hitherto limited the research on wake evolution. In this paper, the wakes of both a troposkien and a H-type VAWT rotor are investigated by comparing experiments and calculations. Experiments were carried out in the large-scale wind tunnel of the Politecnico di Milano, where unsteady velocity measurements in the wake were performed by means of hot wire anemometry. The geometry of the rotors was reconstructed in the open-source wind-turbine software QBlade, developed at the TU Berlin. The aerodynamic model makes use of a lifting line free-vortex wake (LLFVW) formulation, including an adapted Beddoes-Leishman unsteady aerodynamic model; airfoil polars are introduced to assign sectional lift and drag coefficients. A wake sensitivity analysis was carried out to maximize the reliability of wake predictions. The calculations are shown to reproduce several wake features observed in the experiments, including blade-tip vortex, dominant and minor vortical structures, and periodic unsteadiness caused by sectional dynamic stall. The experimental assessment of the simulations illustrates that the LLFVW model is capable of predicting the unsteady wake development with very limited computational cost, thus making the model ideal for the design and optimization of VAWTs.


Sign in / Sign up

Export Citation Format

Share Document