scholarly journals BESTEST and EN ISO 52016 Benchmarking of ALMABuild, a New Open-Source Simulink Tool for Dynamic Energy Modelling of Buildings

Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2938 ◽  
Author(s):  
Jean Pierre Campana ◽  
Gian Luca Morini

In this paper a new open source SIMULINK blockset, named ALMABuild, for the thermal dynamic modelling of a building is presented. SIMULINK, integrated with MATLAB, provides immediate access to an extensive range of analysis and design tools by means of which designers can easily combine, for instance, the energy dynamic simulation of the building-HVAC systems with multi-objective optimisation, avoiding heavy co-simulations involving different software platforms. ALMABuild proposes a simplified way to make the energy model of a building, in which the calculations are done per so called “thermal zone”, in agreement with EN ISO 52016. The user is driven towards the building modelling by means of a series of Graphical User Interfaces (GUIs). In this way the creation of an accurate model can also be achieved by designers lacking specific expertise in numerical computation. In this paper, the benchmarking of ALMABuild by following the BESTEST procedure is described. The agreement with the most popular commercial software for dynamic building energy simulation and with the predictions obtainable by following the simplified hourly calculation method proposed by EN ISO 52016 confirms that ALMABuild is able to guarantee an intuitive and accurate modelling of the thermal building physics. Firstly, analytical and empirical tests are presented, then comparative tests with the reference BESTEST programs, EnergyPlus and the hourly calculation method proposed by EN ISO 52016 are performed. The agreement with BESTEST reference data confirms that ALMABuild is able to model the thermal physics as well as these accepted methods.

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8250
Author(s):  
Avichal Malhotra ◽  
Simon Raming ◽  
Jérôme Frisch ◽  
Christoph van Treeck

Urban Building Energy Modelling (UBEM) requires adequate geometrical information to represent buildings in a 3D digital form. However, open data models usually lack essential information, such as building geometries, due to a lower granularity in available data. For heating demand simulations, this scarcity impacts the energy predictions and, thereby, questioning existing simulation workflows. In this paper, the authors present an open-source CityGML LoD Transformation (CityLDT) tool for upscaling or downscaling geometries of 3D spatial CityGML building models. With the current support of LoD0–2, this paper presents the adapted methodology and developed algorithms for transformations. Using the presented tool, the authors transform open CityGML datasets and conduct heating demand simulations in Modelica to validate the geometric processing of transformed building models.


2013 ◽  
Vol 353-356 ◽  
pp. 2073-2078
Author(s):  
Tian Zhong Ma ◽  
Yan Peng Zhu ◽  
Chun Jing Lai ◽  
De Ju Meng

Slope anchorage structure of soil nail is a kind of economic and effective flexible slope supporting structure. This structure at present is widely used in China. The supporting structure belong to permanent slope anchorage structure, so the design must consider earthquake action. Its methods of dynamical analysis and seismic design can not be found for the time being. The seismic design theory and method of traditional rigidity retaining wall have not competent for this new type of flexible supporting structure analysis and design. Because the acceleration along the slope height has amplification effect under horizontal earthquake action, errors should be induced in calculating earthquake earth pressure using the constant acceleration along the slope height. Considering the linear change of the acceleration along the slope height and unstable soil with the fortification intensity the influence of the peak acceleration, the earthquake earth pressure calculation formula is deduced. The soil nailing slope anchorage structure seismic dynamic calculation model is established and the analytical solutions are obtained. The seismic design and calculation method are given. Finally this method is applied to a case record for illustration of its capability. The results show that soil nailing slope anchorage structure has good aseismic performance, the calculation method of soil nailing slope anchorage structure seismic design is simple, practical, effective. The calculation model provides theory basis for the soil nailing slope anchorage structure of seismic design. Key words: soil nailing; slope; earthquake action; seismic design;


2021 ◽  
Vol 35 ◽  
pp. 100650
Author(s):  
T. Niet ◽  
A. Shivakumar ◽  
F. Gardumi ◽  
W. Usher ◽  
E. Williams ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2944
Author(s):  
Benjamin James Ralph ◽  
Marcel Sorger ◽  
Benjamin Schödinger ◽  
Hans-Jörg Schmölzer ◽  
Karin Hartl ◽  
...  

Smart factories are an integral element of the manufacturing infrastructure in the context of the fourth industrial revolution. Nevertheless, there is frequently a deficiency of adequate training facilities for future engineering experts in the academic environment. For this reason, this paper describes the development and implementation of two different layer architectures for the metal processing environment. The first architecture is based on low-cost but resilient devices, allowing interested parties to work with mostly open-source interfaces and standard back-end programming environments. Additionally, one proprietary and two open-source graphical user interfaces (GUIs) were developed. Those interfaces can be adapted front-end as well as back-end, ensuring a holistic comprehension of their capabilities and limits. As a result, a six-layer architecture, from digitization to an interactive project management tool, was designed and implemented in the practical workflow at the academic institution. To take the complexity of thermo-mechanical processing in the metal processing field into account, an alternative layer, connected with the thermo-mechanical treatment simulator Gleeble 3800, was designed. This framework is capable of transferring sensor data with high frequency, enabling data collection for the numerical simulation of complex material behavior under high temperature processing. Finally, the possibility of connecting both systems by using open-source software packages is demonstrated.


2020 ◽  
Author(s):  
K. Thirumalesh ◽  
Salgeri Puttaswamy Raju ◽  
Hiriyur Mallaiah Somashekarappa ◽  
Kumaraswamy Swaroop

Author(s):  
Akin Caglayan ◽  
Salman Mustafa Husain ◽  
Mutlu Ipek ◽  
Tolga Nurettin Aynur ◽  
Sertac Cadirci

Abstract Performance analysis and design optimization of refrigerators are primarily carried out by time-consuming experiments. The current study presents an alternative method of analysing refrigerators through modelling of the cooling cycle using a software called Dymola, based on an object-oriented programming language, called Modelica. The main components of a domestic refrigerator (compressor, condenser, evaporator, cabinet and capillary tube-suction-line heat exchanger) are first modelled and validated individually. The full dynamic refrigeration cycle model is created afterwards. Both the simulations and the experiments have been conducted using R600a as the refrigerant with on-and off-modes of the reciprocating, single speed compressor. To represent the dynamic cyclic behaviour of the refrigerator, an algorithm block is also included. The algorithm controls the operation using two set-point temperatures of the cabinet. Experiments have been carried out on a single door refrigerator having an interior volume of 343 litres for the validation of the one-dimensional dynamic model. Results show that the cabinet air, evaporation temperature, condensation temperature, power and energy values deviate from experimental values by less than 2°C and 2% respectively. The dynamic modelling is found to be in good agreement with the experiments in the on mode of the compressor and a promising and rapid tool to represent the transient behaviour of the refrigerator.


2017 ◽  
Vol 142 ◽  
pp. 1805-1810 ◽  
Author(s):  
Tom Lloyd Garwood ◽  
Ben Richard Hughes ◽  
Dominic O’Connor ◽  
John K Calautit ◽  
Michael R Oates ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document