scholarly journals Modeling a Large-Scale Battery Energy Storage System for Power Grid Application Analysis

Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3312 ◽  
Author(s):  
Giuliano Rancilio ◽  
Alexandre Lucas ◽  
Evangelos Kotsakis ◽  
Gianluca Fulli ◽  
Marco Merlo ◽  
...  

The interest in modeling the operation of large-scale battery energy storage systems (BESS) for analyzing power grid applications is rising. This is due to the increasing storage capacity installed in power systems for providing ancillary services and supporting nonprogrammable renewable energy sources (RES). BESS numerical models suitable for grid-connected applications must offer a trade-off, keeping a high accuracy even with limited computational effort. Moreover, they are asked to be viable in modeling for real-life equipment, and not just accurate in the simulation of the electrochemical section. The aim of this study is to develop a numerical model for the analysis of the grid-connected BESS operation; the main goal of the proposal is to have a test protocol based on standard equipment and just based on charge/discharge tests, i.e., a procedure viable for a BESS owner without theoretical skills in electrochemistry or lab procedures, and not requiring the ability to disassemble the BESS in order to test each individual component. The BESS model developed is characterized by an experimental campaign. The test procedure itself is framed in the context of this study and adopted for the experimental campaign on a commercial large-scale BESS. Once the model is characterized by the experimental parameters, it undergoes the verification and validation process by testing its accuracy in simulating the provision of frequency regulation. A case study is presented for the sake of presenting a potential application of the model. The procedure developed and validated is replicable in any other facility, due to the low complexity of the proposed experimental set. This could help stakeholders to accurately simulate several layouts of network services.

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2503
Author(s):  
Paulo Rotella Junior ◽  
Luiz Célio Souza Rocha ◽  
Sandra Naomi Morioka ◽  
Ivan Bolis ◽  
Gianfranco Chicco ◽  
...  

Sources such as solar and wind energy are intermittent, and this is seen as a barrier to their wide utilization. The increasing grid integration of intermittent renewable energy sources generation significantly changes the scenario of distribution grid operations. Such operational challenges are minimized by the incorporation of the energy storage system, which plays an important role in improving the stability and the reliability of the grid. This study provides the review of the state-of-the-art in the literature on the economic analysis of battery energy storage systems. The paper makes evident the growing interest of batteries as energy storage systems to improve techno-economic viability of renewable energy systems; provides a comprehensive overview of key methodological possibilities for researchers interested in economic analysis of battery energy storage systems; indicates the need to use adequate economic indicators for investment decisions; and identifies key research topics of the analyzed literature: (i) photovoltaic systems with battery energy storage systems for residential areas, (ii) comparison between energy storage technologies, (iii) power quality improvement. The last key contribution is the proposed research agenda.


2021 ◽  
Vol 290 ◽  
pp. 116692
Author(s):  
Hongjie He ◽  
Ershun Du ◽  
Ning Zhang ◽  
Chongqing Kang ◽  
Xuebin Wang

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2649 ◽  
Author(s):  
Jiashen Teh

The demand response and battery energy storage system (BESS) will play a key role in the future of low carbon networks, coupled with new developments of battery technology driven mainly by the integration of renewable energy sources. However, studies that investigate the impacts of BESS and its demand response on the adequacy of a power supply are lacking. Thus, a need exists to address this important gap. Hence, this paper investigates the adequacy of a generating system that is highly integrated with wind power in meeting load demand. In adequacy studies, the impacts of demand response and battery energy storage system are considered. The demand response program is applied using the peak clipping and valley filling techniques at various percentages of the peak load. Three practical strategies of the BESS operation model are described in this paper, and all their impacts on the adequacy of the generating system are evaluated. The reliability impacts of various wind penetration levels on the generating system are also explored. Finally, different charging and discharging rates and capacities of the BESS are considered when evaluating their impacts on the adequacy of the generating system.


2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Shaozhen Jin ◽  
Zhizhong Mao ◽  
Hongru Li ◽  
Wenhai Qi

In this paper, a novel dynamic programming technique is presented for optimal operation of a typical renewable microgrid including battery energy storage. The main idea is to use the scenarios analysis technique to proceed the uncertainties related to the available output power of wind and photovoltaic units and dynamic programming technique to obtain the optimal control strategy for a renewable microgrid system in a finite time period. First, to properly model the system, a mathematical model including power losses of the renewable microgrid is established, where the uncertainties due to the fluctuating generation from renewable energy sources are considered. Next, considering the dynamic power constraints of the battery, a new performance index function is established, where the Lagrange multipliers and interior point method will be presented for the equality and inequality operation constraints. Then, a feedback control scheme based on the dynamic programming is proposed to solve the model and obtain the optimal solution. Finally, simulation and comparison results are given to illustrate the performance of the presented method.


2018 ◽  
Vol 57 (1) ◽  
pp. 64-72 ◽  
Author(s):  
T Yuvaraja ◽  
KA Ramesh Kumar

The electric power system is undergoing important changes and updates nowadays, particularly on a generation and transmission level. Initially, the move towards a distributed generation in distinction to the present centralized one implies a major assimilation of energy from undeleted supply and electricity storage systems. Advanced power physics interfacing systems are expected to play a key role within the development of such modern governable and economical large-scale grids and associated infrastructures. Throughout the last era, a worldwide analysis and development interest has been impressed within the field of segmental structure conversion; thanks to the well-known offered blessings over typical solutions within the medium and high voltage and power range. Within the context of battery energy storage systems, the segmental structure conversion device family exhibits a further attraction, i.e., the aptitude of embedding such storage parts in an exceedingly split manner, given the existence of many submodules operative at considerably lower voltages. This study deals with many technical challenges related to segmental structure converters and their development with battery energy storage parts to boost load sharing system.


Author(s):  
Kaspars Kroics ◽  
Oleksandr Husev ◽  
Kostiantyn Tytelmaier ◽  
Janis Zakis ◽  
Oleksandr Veligorskyi

<p>Battery energy storage systems are becoming more and more popular solution in the household applications, especially, in combination with renewable energy sources. The bidirectional AC-DC power electronic converter have great impact to the overall efficiency, size, mass and reliability of the storage system. This paper reviews the literature that deals with high efficiency converter technologies for connecting low voltage battery energy storage to an AC distribution grid. Due to low voltage of the battery isolated bidirectional AC-DC converter or a dedicated topology of the non isolated converter is required. Review on single stage, two stage power converters and integrated solutions are done in the paper.</p>


Sign in / Sign up

Export Citation Format

Share Document