scholarly journals Performance and Emission Parameters of Homogeneous Charge Compression Ignition (HCCI) Engine: A Review

Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3557 ◽  
Author(s):  
M. Mofijur ◽  
M.M. Hasan ◽  
T.M.I. Mahlia ◽  
S.M. Ashrafur Rahman ◽  
A.S. Silitonga ◽  
...  

Strict emission regulations and demand for better fuel economy are driving forces for finding advanced engines that will be able to replace the conventional internal combustion engines in the near future. Homogeneous charge compression ignition (HCCI) engines use a different combustion technique; there are no spark plugs or injectors to assist the combustion. Instead, when the mixtures reach chemical activation energy, combustion auto-ignites in multiple spots. The main objective of this review paper is to study the engine performance and emission characteristics of HCCI engines operating in various conditions. Additionally, the impact of different fuels and additives on HCCI engine performance is also evaluated. The study also introduces a potential guideline to improve engine performance and emission characteristics. Compared to conventional compression ignition and spark ignition combustion methods, the HCCI combustion mode is noticeably faster and also provides better thermal efficiency. Although a wide range of fuels including alternative and renewable fuels can be used in the HCCI mode, there are some limitation/challenges, such as combustion limited operating range, phase control, high level of noise, cold start, preparation of homogeneous charge, etc. In conclusion, the HCCI combustion mode can be achieved in existing spark ignition (SI) engines with minor adjustments, and it results in lower oxides of nitrogen (NOx) and soot emissions, with practically a similar performance as that of SI combustion. Further improvements are required to permit extensive use of the HCCI mode in future.

Author(s):  
Xiaojian Yang ◽  
Guoming G Zhu

To implement the homogeneous charge compression ignition combustion mode in a spark ignition engine, it is necessary to have smooth mode transition between the spark ignition and homogeneous charge compression ignition combustions. The spark ignition–homogeneous charge compression ignition hybrid combustion mode modeled in this paper describes the combustion mode that starts with the spark ignition combustion and ends with the homogeneous charge compression ignition combustion. The main motivation of studying the hybrid combustion mode is that the percentage of the homogeneous charge compression ignition combustion is a good parameter for combustion mode transition control when the hybrid combustion mode is used during the transition. This paper presents a control oriented model of the spark ignition–homogeneous charge compression ignition hybrid combustion mode, where the spark ignition combustion phase is modeled under the two-zone assumption and the homogeneous charge compression ignition combustion phase under the one-zone assumption. Note that the spark ignition and homogeneous charge compression ignition combustions are special cases in this combustion model. The developed model is capable of simulating engine combustion over the entire operating range, and it was implemented in a real-time hardware-in-the-loop simulation environment. The simulation results were compared with those of the corresponding GT-Power model, and good correlations were found for both spark ignition and homogeneous charge compression ignition combustions.


2009 ◽  
Vol 29 (17-18) ◽  
pp. 3654-3662 ◽  
Author(s):  
Miguel Torres García ◽  
Francisco José Jiménez-Espadafor Aguilar ◽  
Tomás Sánchez Lencero ◽  
José Antonio Becerra Villanueva

Author(s):  
G Tian ◽  
Z Wang ◽  
Q Ge ◽  
J Wang ◽  
S Shuai

The hybrid combustion mode is an ideal operation strategy for a gasoline homogeneous charge compression ignition (HCCI) engine. A stable and smooth spark ignition (SI)/HCCI switch has been an issue in the research on multimode combustion. In this paper, the switch process has two key issues; the cam profile and throttle opening. With the developed two-stage cam system, the valve phase strategy can be switched within one engine cycle, from the normal cam profile for the SI mode to a negative valve overlap (NVO) profile for the HCCI mode, or vice versa. For a smoother and more stable switch, the throttle change was separated from the cam profile switch, which was called the stepped switch. The effect of throttle opening on HCCI combustion was studied, and the results showed that the concept of the stepped switch was reliable. With gasoline direct injection (GDI) the combustion mode switches from both SI and HCCI sides were smooth, rapid, and robust, without any abnormal combustion such as knocking and misfiring.


Author(s):  
Meshack Hawi ◽  
Mahmoud Ahmed ◽  
Shinichi Ookawara

Homogeneous charge compression ignition (HCCI) is a combustion technology which has received increased attention of researchers in the combustion field for its potential in achieving low oxides of nitrogen (NOx) and soot emission in internal combustion (IC) engines. HCCI engines have advantages of higher thermal efficiency and reduced emissions in comparison to conventional internal combustion engines. In HCCI engines, ignition is controlled by the chemical kinetics, which leads to significant variation in ignition time with changes in the operating conditions. This variation limits the practical range of operation of the engine. Additionally, since HCCI engine operation combines the operating principles of both spark ignition (SI) and compression ignition (CI) engines, HCCI engine parameters such as compression ratio and injection timing may vary significantly depending on operating conditions, including the type of fuel used. As such, considerable research efforts have been focused on establishing optimal conditions for HCCI operation with both conventional and alternative fuels. In this study, numerical simulation is used to investigate the effect of compression ratio on combustion and emission characteristics of an HCCI engine fueled by pure biodiesel. Using a zero-dimensional (0-D) reactor model and a detailed reaction mechanism for biodiesel, the influence of compression ratio on the combustion and emission characteristics are studied in Chemkin-Pro. Simulation results are validated with available experimental data in terms of incylinder pressure and heat release rate to demonstrate the accuracy of the simulation model in predicting the performance of the actual engine. Analysis shows that an increase in compression ratio leads to advanced and higher peak incylinder pressure. The results also reveal that an increase in compression ratio produces advanced ignition and increased heat release rates for biodiesel combustion. Emission of NOx is observed to increase with increase in compression ratio while the effect of compression ratio on emissions of CO, CO2 and unburned hydrocarbon (UHC) is only marginal.


2018 ◽  
Vol 22 (5) ◽  
pp. 2025-2037
Author(s):  
Ante Vucetic ◽  
Mladen Bozic ◽  
Darko Kozarac ◽  
Zoran Lulic

Homogeneous charge compression ignition (HCCI) engine is a potential solution for reducing air pollution and for satisfying legal limits regarding the emissions from internal combustion engines. The HCCI engines have advantages of lower emissions of NOx and particulate matter, compared to the standard combustion modes, while on the other hand one of the major disadvantages is the difficulty of control of start of combustion, since the start of combustion is highly sensitive to the intake air temperature. Additional advantage of the HCCI engine is the ability to operate with wide range of fuels. In order to demonstrate this potential in this study the HCCI mode of operation is compared to the spark ignition mode of operation. The study aims to compare and characterise two different combustion modes on the same engine with different CR and different fuels at similar operating conditions. For that purpose the engine tests are performed at the same indicated mean effective pressures for the spark ignition and HCCI combustion mode at the same engine speed, while the tests are performed at three different engine speeds and three different loads. The measurements were performed on the experimental set-up that consists of single cylinder Diesel engine modified to enable operation in spark ignition and HCCI modes. The characterisation includes the comparison of in-cylinder pressure, temperature and rate of heat release obtained by spark ignition and homogeneous charge compression ignition combustion mode and presents comparisons of engine efficiencies and of emissions of HC, CO, and NOx.


Sign in / Sign up

Export Citation Format

Share Document