scholarly journals Reduction of Heat Losses Using Quadruple Heating Pre-Insulated Networks: A Case Study

Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4699
Author(s):  
Tomasz Janusz Teleszewski ◽  
Dorota Anna Krawczyk ◽  
Antonio Rodero

The paper presents an analysis of heat loss and reductions of annual emissions of air pollutants of a quadruple pre-insulated heating network by comparing this solution with the existing pre-insulated network consisting of four pre-insulated single pipes and the variant consisting of two twin pipe pre-insulated. For calculations, an existing heating network located in central Poland was adopted, where heat is transported for heating purposes of buildings and domestic hot water with circulation of domestic hot water through four separate pre-insulated underground pipes. The idea of the construction of four pre-insulated pipes presented in the paper consists in the location of four steel pipes in a common round thermal insulation, which perform the role of heat transport for heating purposes in multi-family buildings (supply and return) and two pipes transporting hot water (a pipe with domestic hot water with circulation). In Poland, heating pipes used in multi-family housing have a larger diameter compared to domestic hot water pipes, which is why standard twin pipe heating pipes have been used in the construction of four pre-insulated networks, in which the domestic hot water pipe has been added to the thermal insulation and circulation of domestic hot water. In order to determine heat losses, a simplified two-dimensional model of conductive heat transfer was developed using Fortran to create a computer program. The results of numerical simulations show that the use of twin pipes for the construction of pre-insulated quadruple networks has contributed to a significant reduction in heat loss in relation to the existing single pre-insulated network (up to 57.1%), while reducing the thermal insulation field of the cross-section of the pre-insulated pipe by 21.4%.

Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2104 ◽  
Author(s):  
Dorota Anna Krawczyk ◽  
Tomasz Janusz Teleszewski

This paper presents possible variants of reducing the heat loss in an existing heating network made from single pre-insulated pipes located in central Europe. In order to achieve this aim, simulations were carried out for five different variants related to the modification of the network operation temperature, replacement of a single network with a double pre-insulated one, and changes in the cross-section geometry of the thermal insulation of the double heating network from circular to egg-shaped. The proposed egg-shaped thermal insulation was obtained by modifying the shape of the Cassini oval, in that the supply pipe has a greater insulation thickness compared to the return pipe. The larger insulation field in the supply pipe contributed to reducing the heat flux density around the supply line and, as a result, to significantly reducing heat loss. The egg-shaped thermal insulation described in the publication in a mathematical formula can be used in practice. This work compares the heat losses for the presented variants and determines the ecological effect. Heat losses were determined using the boundary element method (BEM), using a proprietary computer program written as part of the VIPSKILLS 2016-1-PL01-KA203-026152 project Erasmus+.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3350
Author(s):  
Theofanis Benakopoulos ◽  
William Vergo ◽  
Michele Tunzi ◽  
Robbe Salenbien ◽  
Svend Svendsen

The operation of typical domestic hot water (DHW) systems with a storage tank and circulation loop, according to the regulations for hygiene and comfort, results in a significant heat demand at high operating temperatures that leads to high return temperatures to the district heating system. This article presents the potential for the low-temperature operation of new DHW solutions based on energy balance calculations and some tests in real buildings. The main results are three recommended solutions depending on combinations of the following three criteria: district heating supply temperature, relative circulation heat loss due to the use of hot water, and the existence of a low-temperature space heating system. The first solution, based on a heating power limitation in DHW tanks, with a safety functionality, may secure the required DHW temperature at all times, resulting in the limited heating power of the tank, extended reheating periods, and a DH return temperature of below 30 °C. The second solution, based on the redirection of the return flow from the DHW system to the low-temperature space heating system, can cool the return temperature to the level of the space heating system return temperature below 35 °C. The third solution, based on the use of a micro-booster heat pump system, can deliver circulation heat loss and result in a low return temperature below 35 °C. These solutions can help in the transition to low-temperature district heating.


2020 ◽  
Vol 172 ◽  
pp. 12005
Author(s):  
Anti Hamburg ◽  
Targo Kalamees

The majority of old apartment buildings were designed with an unheated basement. Building service systems such as district heating heat exchangers and pipes for domestic hot water and for space heating are usually located in this unheated basement. In addition, these locations are connected with shafts. All these pipe’s heat losses increase air temperature in the basement. If these losses are included into the building energy balance, then they decrease heat loss through the basement ceiling. The basement’s heat balance is also dependent on heat loss from the basement envelope and outdoor air exchange in the basement. In early stages of design, designers and energy auditors need rough models to make decisions in limited information conditions. Once the effects of heat losses from pipes become apparent, they need to be factored into the buildings energy balance, and their effects on heat loss through the basement ceiling needs to be calculated. In this paper we analyse the effect these heat losses have on the service system’s heat gains and heat loss through an uninsulated basement ceiling at different basement insulation levels and with different thicknesses of pipe insulation. From our study we found that pipe losses in the basement increase the building energy performance value by at least 4 kWh/(m²∙a) and their impact on a renovated apartment building is very important.


Sign in / Sign up

Export Citation Format

Share Document