scholarly journals The influence of heat loss from pipes in an unheated basement on the heating energy consumption of an entire typical apartment building

2020 ◽  
Vol 172 ◽  
pp. 12005
Author(s):  
Anti Hamburg ◽  
Targo Kalamees

The majority of old apartment buildings were designed with an unheated basement. Building service systems such as district heating heat exchangers and pipes for domestic hot water and for space heating are usually located in this unheated basement. In addition, these locations are connected with shafts. All these pipe’s heat losses increase air temperature in the basement. If these losses are included into the building energy balance, then they decrease heat loss through the basement ceiling. The basement’s heat balance is also dependent on heat loss from the basement envelope and outdoor air exchange in the basement. In early stages of design, designers and energy auditors need rough models to make decisions in limited information conditions. Once the effects of heat losses from pipes become apparent, they need to be factored into the buildings energy balance, and their effects on heat loss through the basement ceiling needs to be calculated. In this paper we analyse the effect these heat losses have on the service system’s heat gains and heat loss through an uninsulated basement ceiling at different basement insulation levels and with different thicknesses of pipe insulation. From our study we found that pipe losses in the basement increase the building energy performance value by at least 4 kWh/(m²∙a) and their impact on a renovated apartment building is very important.

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3350
Author(s):  
Theofanis Benakopoulos ◽  
William Vergo ◽  
Michele Tunzi ◽  
Robbe Salenbien ◽  
Svend Svendsen

The operation of typical domestic hot water (DHW) systems with a storage tank and circulation loop, according to the regulations for hygiene and comfort, results in a significant heat demand at high operating temperatures that leads to high return temperatures to the district heating system. This article presents the potential for the low-temperature operation of new DHW solutions based on energy balance calculations and some tests in real buildings. The main results are three recommended solutions depending on combinations of the following three criteria: district heating supply temperature, relative circulation heat loss due to the use of hot water, and the existence of a low-temperature space heating system. The first solution, based on a heating power limitation in DHW tanks, with a safety functionality, may secure the required DHW temperature at all times, resulting in the limited heating power of the tank, extended reheating periods, and a DH return temperature of below 30 °C. The second solution, based on the redirection of the return flow from the DHW system to the low-temperature space heating system, can cool the return temperature to the level of the space heating system return temperature below 35 °C. The third solution, based on the use of a micro-booster heat pump system, can deliver circulation heat loss and result in a low return temperature below 35 °C. These solutions can help in the transition to low-temperature district heating.


2015 ◽  
Vol 5 (2) ◽  
pp. 29-36 ◽  
Author(s):  
I. Giurca

Abstract The article presents aspects related to the calculation of heat loss through the pipes of the interior central heating system. The purpose of the article is to detail the local heat losses in case of central heating systems. Based on the conclusions of the article, we propose the modification of the calculation methodology related to the building energy audit.


2019 ◽  
Vol 111 ◽  
pp. 06009
Author(s):  
Tymofii Tereshchenko, ◽  
Dmytro Ivanko ◽  
Natasa Nord ◽  
Igor Sartori

Widespread introduction of low energy buildings (LEBs), passive houses, and zero emission buildings (ZEBs) are national target in Norway. In order to achieve better energy performance in these types of buildings and successfully integrate them in energy system, reliable planning and prediction techniques for heat energy use are required. However, the issue of energy planning in LEBs currently remains challenging for district heating companies. This article proposed an improved methodology for planning and analysis of domestic hot water and heating energy use in LEBs based on energy signature method. The methodology was tested on a passive school in Oslo, Norway. In order to divide energy signature curve on temperature dependent and independent parts, it was proposed to use piecewise regression. Each of these parts were analyzed separately. The problem of dealing with outliers and selection of the factors that had impact of energy was considered. For temperature dependent part, the different methods of modelling were compared by statistical criteria. The investigation showed that linear multiple regression model resulted in better accuracy in the prediction than SVM, PLS, and LASSO models. In order to explain temperature independent part of energy signature the hourly profiles of energy use were developed.


2014 ◽  
Vol 935 ◽  
pp. 97-101
Author(s):  
Zhen Zhong Guan ◽  
Chong Jie Wang ◽  
Yi Bing Xue

A solar district heating and water heating integrated system has been designed and installed in a 5000m2 residential quarter. The integrated system uses vacuum glass tube solar collector to collect solar radiation energy, and uses water as heat medium. Solar energy provides almost 50% of the total heating energy consumption in winter. The inadequate part of energy can be provided by a steam heater which steam is provided by exhaust steam of the turbine from a power station nearby. The integrated system is operating automatically according to the solar radiation and working condition. Low-temperature floor radiation system is used as indoor heat radiator. At the same time, the system can provide 24h hot water supply. The integrated system has operated for 3 years, saves a large amount of energy, and receives good profit in both economical and environment.


2016 ◽  
Vol 38 (1) ◽  
pp. 64-88 ◽  
Author(s):  
N Belkacem ◽  
L Loukarfi ◽  
M Missoum ◽  
H Naji ◽  
A Khelil ◽  
...  

Bioclimatic architecture strategies and solar active systems contribute strongly to the reduction of building energy demand and achieving thermal comfort for its occupants over the whole year. This paper deals with the study of the energy performance improvement of a pilot bioclimatic house located in Algiers (Algeria). First, a series of experimental measures are conducted during cold period to show the effect of passive and active solar gains on the improvement of the indoor air temperature of the house. Then, a dynamic model of a solar heating system coupled with a bioclimatic house has been developed using TRNSYS software and validated with experimental data. The validated model has been used to establish the energy balance of the pilot bioclimatic house without solar heating system and to compare them to those of a conventional house. Finally, the improvement of the energy balance of the pilot bioclimatic house has been done by passive and active ways. The passive one includes the increase of south facing windows size and the use of night cooling with the use of shading device in summer. The active one consists of the integration of a solar heating system. Furthermore, an environmental study has been performed. The experimental results show that the energy requirements of a pilot bioclimatic house are very low which is suitable for the use of solar heating system in building. The simulation results show that the application of bioclimatic strategies is a better way to provide thermal comfort in summer and decrease the space heating energy demand of the house with 48.70%. The active solar system will cover 67.74% of the energy demand for heating of the house. These energy savings generate a significant reduction in CO2 emissions. Practical application: This work will enable engineers and designers of modern buildings of buildings in a Mediterranean climate to improve building energy efficiency and reduce CO2 emissions by a conjunction of different passive heating and cooling techniques such as insulation, thermal mass, window shades, night ventilation, and the solar heating system. The paper provides designers an effective strategy in terms of energy savings and indoor thermal comfort while reducing CO2 emissions.


2019 ◽  
Vol 10 (1) ◽  
pp. 291 ◽  
Author(s):  
Antonio Atienza-Márquez ◽  
Joan Carles Bruno ◽  
Alberto Coronas

The use of industrial excess heat in district heating networks is very attractive. The main issue is the transport of the heat from the point of generation to the local distribution network, in a way similar to the structure of electricity transport and distribution networks. Absorption systems have been proposed to transport and distribute waste heat using two absorption stations. In one of them (step-up station), industrial heat at a low temperature is pumped to a higher temperature to facilitate its transport and at the same time increase the temperature difference between the supply and return streams, in this way reducing the hot water mass flow rate circulating through the heat transport network. Heat is then used in a second absorption system (step-down station) to provide heat to a low temperature local district network. In this paper, several absorption system configurations are analyzed for both stations. A detailed thermodynamic analysis of each configuration is performed using selected energy performance indicators to calculate its global performance. The implementation of these kind of systems could enable the use of waste heat to produce heating and cooling for smart communities located a few dozens of kilometers away from industrial sites.


2021 ◽  
Vol 2042 (1) ◽  
pp. 012019
Author(s):  
G Peronato ◽  
R Boghetti ◽  
J H Kämpf

Abstract Aggregated building energy demand is a useful indicator for urban energy planning. It can be used by planners and decision-makers to identify clusters of high energy demand in a given urban area and efficiently plan, for example, district heating networks. Various data sources exist at the pan-European level describing land use and built areas. Combined with statistical data, such maps have been used in previous research for estimating building energy performance aggregated at the hectare level, using engineering assumptions. In this paper, we show that large-scale land-use maps alone can be used for predicting annual building energy demand with an accuracy comparable to the one of previous engineering models. We hence present a preliminary method based on Convolutional Neural Networks at different spatial resolutions. The resulting model was trained and tested in an area of about 170 km1 in Geneva (Switzerland) using a local annual heating demand dataset comprising 16239 buildings. On a 300-m aggregation tile, the obtained mean error (14.3%) is significantly reduced compared to the one of a simple linear model (37.2%). Using solely land-use data, we also achieve similar results for a 100-m tile as those of an engineering model from the literature.


Author(s):  
T T Chow ◽  
A L S Chan ◽  
K F Fong ◽  
W C Lo ◽  
C L Song

Solar co-generation applied in buildings has the advantage of increasing the energy output per unit installed collector area. This paper investigates a centralized photovoltaic and hot-water collector system that can serve as a water pre-heating system for a multistory apartment building in a warm climate region. Collectors are mounted on vertical facades. Electricity generated by the system is consumed by the circulation pumps and the water heaters. The facade integration, together with the heat and electricity co-generation, are features embedding both active and passive solar technology. A numerical model that analyzes its energy performance in an apartment building in Hong Kong is described. The study has been based on practical design requirements. It is estimated that, with the use of amorphous-silicon hybrid collectors which cover two-thirds of the west- and south-facing facades, the system is able to support one-third of the thermal energy required for water heating.


2019 ◽  
Vol 111 ◽  
pp. 03025
Author(s):  
Annamaria Belleri ◽  
Chiara Dipasquale ◽  
Jennifer Adami

Despite a wide range of energy-efficient technologies, financial products and public incentives are already available, the private as well as the public sector are struggling to invest in energy efficient solutions for buildings. The primary barriers are the high initial cost and the uncertain payback period of the energy refurbishment. Allowing for different scenario testing and considering interactions among different building energy systems, building energy simulation tools can help investors overcoming such barriers by offering support to the technical planning of energy refurbishment kits through quantitative information rather than qualitative. The energy performance and comfort of three reference multifamily residential buildings typologies were evaluated considering three envelope retrofitting performance levels (high-medium-low insulated and airtight) and different heating and domestic hot water systems (heat pump, boiler, district heating). The tested envelope retrofitting performance levels allow for heating need reduction between 50% and 90% compared to the reference case. The active cooling system is not accounted for and building energy simulations outputs include thermal comfort evaluation and overheating risk assessment during the summer season. The potential of photovoltaic system combined with heat pump is evaluated in the three reference cases leading to up to 30% of load coverage.


Sign in / Sign up

Export Citation Format

Share Document