scholarly journals Proposal for a Method Predicting Suitable Areas for Installation of Ground-Source Heat Pump Systems Based on Response Surface Methodology

Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1872
Author(s):  
Shohei Kaneko ◽  
Akira Tomigashi ◽  
Takeshi Ishihara ◽  
Gaurav Shrestha ◽  
Mayumi Yoshioka ◽  
...  

The installation potential of ground-source heat pump (GSHP) systems has been studied based on the spatial interpolation of numerical simulation results using ground heat exchanger (GHE) models. This study is the first to create an estimation formula for the heat exchange rate (HER) to obtain a solution equivalent to the numerical analysis results considering the average method when supplying three-dimensional (3D) hydrogeological information that affects the HER to a two-dimensional (2D) map. It was found that the main factors affecting the HER were groundwater flow velocity, subsurface temperature, and thermal conductivity. The response surface methodology was utilized to approximate the HER using the above-mentioned three parameters. The estimated HER showed very strong agreement with that calculated by the GHE models. The application of the estimation formula to the simulation of the 3D groundwater flow and heat transport model of the Sendai Plain (Japan) better reflects the hydrogeological information of the regional model than conventional maps. The proposed method improves the spatial resolution of maps and allows for the easy creation of the HER estimation formula.

2013 ◽  
Vol 700 ◽  
pp. 231-234
Author(s):  
Lian Yang ◽  
Yong Hong Huang ◽  
Liu Zhang

There are many ground source heat pumps in engineering construction application. However, Research on heat exchanger models of single-hole buried vertical ground source heat pump mostly focuses on single U-tube ground heat exchangers other than double U-tube ones in China currently. Compared with single U-tubes, double U-tubes have the heat transfer particularity of asymmetry. Therefore, the use of the traditional single tube models would have large error in the simulation of the actual double U-tube heat exchangers. This paper frames a three-dimensional heat transfer model for the vertical single-hole buried double u-tube heat exchanger in a ground source heat pump system. The model considers the performance of U-bube material and uses a dual coordinate system and makes the control elemental volumes superimposed.


2014 ◽  
Vol 548-549 ◽  
pp. 595-600
Author(s):  
Can Can Zhang ◽  
Yue Jin Yu

In order to analyze the influence of groundwater flow on ground heat exchangers with different arrangements, with a project in Nanjing the access temperature field in the multi-borehole field was simulated after the ground source heat pump system had been performed for a year. Simulation results show that the access temperature is higher in the ground surrounding the borehole than the center of the corresponding borehole, thus forming a thermal barrier surrounding the borehole. Groundwater flow helps relieve temperature imbalance owing to the imbalance of heating and cooling load. The performance of the ground heat exchangers is better in staggered arrangement than in aligned arrangement. In the borehole field, the boreholes upstream have thermal interference on those downstream. And the extent of thermal interference depends on the direction of the groundwater flow when the locations of the boreholes are fixed in the borehole field.


Author(s):  
Ayako Funabiki ◽  
Masahito Oguma ◽  
Taisei Yabuki ◽  
Takao Kakizaki

Heat advection by groundwater flow is known to improve the performance of ground heat exchangers (GHEs), but the effect of groundwater advection on performance is not yet fully understood. This study examined how parameters related to groundwater flow, such as aquifer thickness, porosity, lithology, and groundwater flow velocity, affect the performance of a borehole GHE. Under the thin-aquifer condition (10 m, or 10% of the entire GHE length in this study), groundwater flow velocity had the greatest effect on heat flux. With a groundwater flow velocity of at least 10−4 m/s through a low-porosity aquifer filled with gravel with high thermal conductivity, the heat flux of a GHE was as much as 60% higher than that of a non-aquifer GHE. If the aquifer is as thick as 50 m (50% of the entire GHE length), the high thermal conductivity of gravel doubled the heat flux of the GHE with a groundwater flow velocity of at least 10−5 m/s. Thus, not only groundwater flow velocity, but also aquifer thickness and thermal conductivity were important factors. However, groundwater seldom flows at such high velocities, and porosity, gravel size, and aquifer thickness vary regionally. Thus, in the design of ground source heat pump systems, it is not appropriate to assume a large groundwater effect.


Author(s):  
Ayako Funabiki ◽  
Masahito Oguma

Heat advection by groundwater flow is known to improve the performance of ground heat exchangers (GHEs), but the effect of groundwater advection on performance is not yet fully understood. This numerical study examined how parameters related to groundwater flow, such as aquifer thickness, porosity, lithology, and groundwater flow velocity, affected the performance of a borehole GHE. Under a thin-aquifer condition (10 m, or 10% of the entire GHE length in this study), groundwater flow velocity had the greatest effect on heat flux. At a groundwater flow velocity of at least 10−4 m/s through a low-porosity aquifer filled with granite gravel with high thermal conductivity, the heat flux of a GHE was as much as 60% higher than that of a GHE in a setting without an aquifer. If the aquifer was as thick as 50 m, the high thermal conductivity of granite gravel doubled the heat flux of the GHE at a groundwater flow velocity of at least 10−5 m/s. Thus, not only groundwater flow velocity but also aquifer thickness and thermal conductivity were important factors. However, groundwater seldom flows at such high velocities, and porosity, gravel size and composition, and aquifer thickness vary regionally. Thus, in the design of ground source heat pump systems, it is not appropriate to assume a large groundwater effect.


2021 ◽  
Author(s):  
Arif Widiatmojo ◽  
Youhei Uchida ◽  
Isao Takashima

In recent decades, the fast-growing economies of Southeast Asian countries have increased the regional energy demand per capita. The statistic indicates Southeast Asian electricity consumption grows for almost 6% annually, with space cooling becoming the fastest-growing share of electricity use. The ground source heat pump technology could be one of the solutions to improve energy efficiency. However, currently, there are limited data on how a ground source heat pump could perform in such a climate. The thermal response test is widely used to evaluate the apparent thermal conductivity of the soil surrounding the ground heat exchanger. In common practice, the apparent thermal conductivity can be calculated from the test result using an analytical solution of the infinite line source method. The main limitation of this method is the negligence of the physical effect of convective heat transfer due to groundwater flow. While convection and dispersion of heat are two distinctive phenomena, failure to account for both effects separately could lead to an error, especially in high groundwater flow. This chapter discusses the numerical evaluation of thermal response test results in Bangkok, Thailand, and Hanoi, Vietnam. We applied a moving infinite line source analytical model to evaluate the value of thermal conductivity and groundwater flow velocity. While determining the ground thermal properties in a high accuracy is difficult, the moving infinite line source method fulfills the limitation of the infinite line source method. Further, we evaluated the five-year performance of the ground source heat pump system coupled with two vertical ground heat exchangers in Bangkok and Hanoi. The results suggest the importance of groundwater flow to enhance the thermal performance of the system.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1418 ◽  
Author(s):  
Ahmed A. Serageldin ◽  
Ali Radwan ◽  
Yoshitaka Sakata ◽  
Takao Katsura ◽  
Katsunori Nagano

New small-scale experiments are carried out to study the effect of groundwater flow on the thermal performance of water ground heat exchangers for ground source heat pump systems. Four heat exchanger configurations are investigated; single U-tube with circular cross-section (SUC), single U-tube with an oval cross-section (SUO), single U-tube with circular cross-section and single spacer with circular cross-section (SUC + SSC) and single U-tube with an oval cross-section and single spacer with circular cross-section (SUO + SSC). The soil temperature distributions along the horizontal and vertical axis are measured and recorded simultaneously with measuring the electrical energy injected into the fluid, and the borehole wall temperature is measured as well; consequently, the borehole thermal resistance (Rb) is calculated. Moreover, two dimensional and steady-state CFD simulations are validated against the experimental measurements at the groundwater velocity of 1000 m/year with an average error of 3%. Under saturated conditions without groundwater flow effect; using a spacer with SUC decreases the Rb by 13% from 0.15 m·K/W to 0.13 m·K/W, also using a spacer with the SUO decreases the Rb by 9% from 0.11 m·K/W to 0.1 m·K/W. In addition, the oval cross-section with spacer SUO + SSC decreases the Rb by 33% compared with SUC. Under the effect of groundwater flow of 1000 m/year; Rb of the SUC, SUO, SUC + SSC and SUO + SSC cases decrease by 15.5%, 12.3%, 6.1% and 4%, respectively, compared with the saturated condition.


Sign in / Sign up

Export Citation Format

Share Document