scholarly journals Geometry-Load Based Hybrid Correction Method for the Pre-Deformation Design of a Steam Turbine Blade

Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2471
Author(s):  
Guodong Yi ◽  
Huifang Zhou ◽  
Lemiao Qiu ◽  
Jundi Wu

To solve the problem of the slow convergence of the geometry-based correction (GC) method in the design of a steam turbine blade, this paper proposes a geometry-load-based hybrid correction (GLHC) method. In this method, the deformation of the blade caused by the centrifugal load is still corrected by the GC method, while the deformation caused by the aerodynamic load is corrected by the load-based correction (LC) method instead of the GC method. The LC method updates the cold shape of the blade by reversely applying the aerodynamic load to the ideal shape according to the balance between the internal force generated by the deformation of the blade and the aerodynamic load acting on surface of the hot blade shape, thereby reducing the number of iterations by reducing the shape deviation in each step of the iteration. The GLHC method, which combines the GC and LC methods, is used to improve the design process. The efficiency of the GLHC and GC methods are compared with the maximum number of position deviations of the corresponding mesh nodes between the hot blade and ideal blade shapes, which acts as the criterion. The results show that the GLHC method reduces the number of iterations.

2021 ◽  
Vol 1096 (1) ◽  
pp. 012097
Author(s):  
A M Kongkong ◽  
H Setiawan ◽  
J Miftahul ◽  
A R Laksana ◽  
I Djunaedi ◽  
...  

Author(s):  
Mahesh M. Bhat ◽  
V. Ramamurti ◽  
C. Sujatha

Abstract Steam turbine blade is a very complex structure. It has geometric complexities like variation of twist, taper, width and thickness along its length. Most of the time these variations are not uniform. Apart from these geometric complexities, the blades are coupled by means of lacing wire, lacing rod or shroud. Blades are attached to a flexible disc which contributes to the dynamic behavior of the blade. Root fixity also plays an important role in this behavior. There is a considerable variation in the frequencies of blades of newly assembled turbine and frequencies after some hours of running. Again because of manufacturing tolerances there can be some variation in the blade to blade frequencies. Determination of natural frequencies of the blade is therefore a very critical job. Problems associated with typical industrial turbine bladed discs of a 235 MW steam turbine are highlighted in this paper.


2009 ◽  
Vol 16 (4) ◽  
pp. 1270-1281 ◽  
Author(s):  
J. Kubiak Sz ◽  
J.A. Segura ◽  
G. Gonzalez R ◽  
J.C. García ◽  
F. Sierra E ◽  
...  

2014 ◽  
Vol 989-994 ◽  
pp. 2908-2912
Author(s):  
Jian Jun Wang ◽  
Ke Wang ◽  
Qiong Wu

In order to solve the problem of poor steam turbine blade processing efficiency, and on the basis of analyzing the turbine blade surface and the existing processing methods, a model of circular cutter turbine blade machining is built. By comparing the tool paths of horizontal and vertical section envelope machining, choosing quasi-vertical cross section envelope machining method and utilizing the original datum and NURBS surface matching mathematic methods, this paper provides an algorithm of residual height calculating, and based on this, the tool path can be planned. Datum show that, the tool path of circular cutter machining blades is much longer than the tool path of ball-end cutter envelop milling machining blades, and the machining efficiency is also highly enhanced.


Sign in / Sign up

Export Citation Format

Share Document