scholarly journals Evaluation of a Modified Equivalent Fuel-Consumption Minimization Strategy Considering Engine Start Frequency and Battery Parameters for a Plugin Hybrid Two-Wheeler

Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3122
Author(s):  
Naga Kavitha Kommuri ◽  
Andrew McGordon ◽  
Antony Allen ◽  
Dinh Quang Truong

An appropriate energy management strategy is essential to enhance the performance of hybrid electric vehicles. A novel modified equivalent fuel-consumption minimization strategy (ECMS) is developed considering the engine operating point deviation from the optimum operating line. This paper focuses on an all-inclusive evaluation of this modified ECMS with other state-of-art energy management strategies concerning battery ageing, engine switching along with fuel economy and charge sustenance. The simulation-based results of a hybrid two-wheeler concept are analysed, which shows that the modified ECMS offers the highest benefit compared to rule-based controllers concerning fuel economy and reduction in engine switching events. However, the improvement in fuel economy using modified ECMS has significant negative potential effects on critical battery parameters influencing battery ageing. The results are analysed and found consistent for two different drive cycles and three different powertrain component configurations. The results show a significant reduction in fuel consumption of up to 21.18% and a reduction in engine switching events of up to 55% with modified ECMS when compared with rule-based strategies. However, there is a significant increase in battery temperature by 31% and battery throughput by 378%, which plays a major role in accelerating battery ageing. This paper emphasizes the need to consider battery-ageing parameters along with other control objectives for a robust assessment of energy management strategies. This study helps in laying down a foundation for future improvements in energy management development and it also aids in establishing a basis for comparing energy management controllers.

Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2076 ◽  
Author(s):  
Xixue Liu ◽  
Datong Qin ◽  
Shaoqian Wang

A parallel hybrid electric vehicle (PHEV) is used to investigate the fuel economy effect of the equivalent fuel consumption minimization strategy (ECMS) with the equivalent factor as the core, where the equivalent factor is the conversion coefficient between fuel thermal energy and electric energy. In the conventional ECMS strategy, the battery cannot continue to discharge when the state of charge (SOC) is lower than the target value. At this time, the motor mainly works in the battery charging mode, making it difficult to adjust the engine operating point to the high-efficiency zone during the acceleration process. To address this problem, a relationship model of the battery SOC, vehicle acceleration a, and equivalent factor S was established. When the battery SOC is lower than the target value and the vehicle demand torque is high, which makes the engine operating point deviate from the high-efficiency zone, the time that the motor spends in the power generation mode during the driving process is reduced. This enables the motor to drive the vehicle at the appropriate time to reduce the engine output torque, and helps the engine operate in the high-efficiency zone. The correction function under US06 condition was optimized by genetic algorithm (GA). The best equivalent factor MAP was obtained with acceleration a and battery SOC as independent variables, and the improved global optimal equivalent factor of ECMS was established and simulated offline. Simulation results show that compared with conventional ECMS, the battery still has positive power output even when the SOC is less than the target value. The SOC is close to the target value after the cycle condition, and fuel economy improved by 1.88%; compared with the rule-based energy management control strategies, fuel economy improved by 10.17%. These results indicate the effectiveness of the proposed energy management strategy.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3796 ◽  
Author(s):  
Ahmed M. Nassef ◽  
Ahmed Fathy ◽  
Hegazy Rezk

An effective energy management strategy based on the mine-blast optimization (MBA) technique was proposed in this paper to optimally manage the energy in a hybrid power system. The hybrid system was composed of fuel cells, batteries, and supercapacitors. Such system was employed to supply highly fluctuated load. The results of the proposed strategy were compared with previously employed strategies such as fuzzy logic control (FLC), state machine control strategy (SMCS), and equivalent fuel consumption minimization strategy (ECMS). The comparison was carried out in terms of the hydrogen fuel economy and the overall efficiency as the key factors. The resulting responses of the proposed MBA-based management strategy indicate that its performance is the best among the other strategies of SMCS, FLC, and ECMS in both the hydrogen fuel economy and overall efficiency.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4472 ◽  
Author(s):  
Rishikesh Mahesh Bagwe ◽  
Andy Byerly ◽  
Euzeli Cipriano dos Santos ◽  
Ben-Miled

This paper proposes an Adaptive Rule-Based Energy Management Strategy (ARBS EMS) for a parallel hybrid electric vehicle (HEV). The aim of the strategy is to facilitate the aftermarket hybridization of medium- and heavy-duty vehicles. ARBS can be deployed online to optimize fuel consumption without any detailed knowledge of the engine efficiency map of the vehicle or the entire duty cycle. The proposed strategy improves upon the established Preliminary Rule-Based Strategy (PRBS), which has been adopted in commercial vehicles, by dynamically adjusting the regions of operations of the engine and the motor. It prevents the engine from operating in highly inefficient regions while reducing the total equivalent fuel consumption of the vehicle. Using an HEV model developed in Simulink®, both the proposed ARBS and the established PRBS strategies are compared over an extended duty cycle consisting of both urban and highway segments. The results show that ARBS can achieve high MPGe with different thresholds for the boundary between the motor region and the engine region. In contrast, PRBS can achieve high MPGe only if this boundary is carefully established from the engine efficiency map. This difference between the two strategies makes the ARBS particularly suitable for aftermarket hybridization where full knowledge of the engine efficiency map may not be available.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Jaewook Shin ◽  
Haksu Kim ◽  
Seungeon Baek ◽  
Myoungho Sunwoo ◽  
Manbae Han

AbstractThe market concern of improvement of vehicle safety and its convenience to drive a vehicle has resulted in the growth of the demand for vehicular electronic equipment. This trend requires additional power in the vehicle and thus makes prone to the increase of fuel consumption for vehicles equipped with internal combustion engines. To minimize this fuel consumption, an efficient energy management (EM) strategy for the electrical system of alternator and battery is required. This paper proposes a successful EM strategy based on the rule-based alternator control using predictive information. The proposed strategy reduces fuel consumption by charging batteries using the residual kinetic energy during deceleration. In particular, we predict electrical energy that is recovered by the residual energy using a Markov chain-based velocity prediction algorithm. The accommodation of predicted electrical energy and current vehicle information determines one of the three predefined control modes, such as charge, hold, and discharge, depending on vehicle driving states. This control mode determines the power generation from the alternator and controls the amount of torque to the vehicle electrical system. The proposed strategy is verified through simulation and experiment. The simulation with the new EM strategy is validated as comparing the operation difference with a conventional proportional-integral (PI) control algorithm under the same driver behaviors. Further validation in real vehicle driving experiment shows that fuel consumption was reduced by 2.1% compared to the conventional PI control algorithm.


Author(s):  
Bo Gu ◽  
Giorgio Rizzoni

In this paper we present a novel adaptation method for the Adaptive Equivalent fuel Consumption Minimization Strategy (A-ECMS). The approach is based on Driving Pattern Recognition (DPR). The Equivalent (fuel) Consumption Minimization Strategy (ECMS) method provides real-time suboptimal energy management decisions by minimizing the "equivalent" fuel consumption of a hybrid-electric vehicle. The equivalent fuel consumption is a combination of the actual fuel consumption and electrical energy use, and an equivalence factor is used to convert electrical power used into an equivalent chemical fuel quantity. In this research, a driving pattern recognition method is used to obtain better estimation of the equivalence factor under different driving conditions. A time window of past driving conditions is analyzed periodically and recognized as one of the Representative Driving Patterns (RDPs). Periodically updating the control parameter according to the driving conditions yields more precise estimation of the equivalent fuel consumption cost, thus providing better fuel economy. Besides minimizing the instantaneous equivalent fuel consumption, the battery State of Charge (SOC) management is also maintained by using a PI controller to keep the SOC around a nominal value. The primary improvement of the proposed A-ECMS over other algorithms with similar objectives is that it does not require the knowledge of future driving cycles and has a low computational burden. Results obtained in this research show that the driving conditions can be successfully recognized and good performance can be achieved in various driving conditions while sustaining battery SOC within desired limits.


Sign in / Sign up

Export Citation Format

Share Document