equivalence factor
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 7)

H-INDEX

8
(FIVE YEARS 1)

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7919
Author(s):  
Penghui Qiang ◽  
Peng Wu ◽  
Tao Pan ◽  
Huaiquan Zang

Real-time energy management strategy (EMS) plays an important role in reducing fuel consumption and maintaining power for the hybrid electric vehicle. However, real-time optimization control is difficult to implement due to the computational load in an instantaneous moment. In this paper, an Approximate equivalent consumption minimization strategy (Approximate-ECMS) is presented for real-time optimization control based on single-shaft parallel hybrid powertrain. The quadratic fitting of the engine fuel consumption rate and the single-axle structure characteristics of the vehicle make the fitness function transformed into a cubic function based on ECMS for solving. The candidate solutions are thus obtained to distribute torque and the optimal distribution is got from the candidate solutions. The results show that the equivalent fuel consumption of Approximate-ECMS was 7.135 L/km by 17.55% improvement compared with Rule-ECMS in the New European Driving Cycle (NEDC). To compensate for the effect of the equivalence factor on fuel consumption, a hybrid dynamic particle swarm optimization-genetic algorithm (DPSO-GA) is used for the optimization of the equivalence factor by 9.9% improvement. The major contribution lies in that the Approximate-ECMS can reduce the computational load for real-time control and prove its effectiveness by comparing different strategies.


ce/papers ◽  
2021 ◽  
Vol 4 (2-4) ◽  
pp. 1065-1075
Author(s):  
Gianluca Bianchi ◽  
Alain Nussbaumer ◽  
José J. Oliveira Pedro
Keyword(s):  

Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6580
Author(s):  
Shima Nazari ◽  
Jason Siegel ◽  
Robert Middleton ◽  
Anna Stefanopoulou

This work investigates an innovative low-voltage (<60 V) hybrid device that enables engine boosting and downsizing in addition to mild hybrid functionalities such as regenerative braking, start-stop, and torque assist. A planetary gear set and a brake permit the power split supercharger (PSS) to share a 9 kW motor between supercharging the engine and direct torque supply to the crankshaft. In contrast, most e-boosting schemes use two separate motors for these two functionalities. This single motor structure restricts the PSS operation to only one of the supercharging or parallel hybrid modes; therefore, an optimized decision making strategy is necessary to select both the device mode and its power split ratio. An adaptive equivalent consumption minimization strategy (A-ECMS), which uses the battery state of charge (SoC) history to adjust the equivalence factor, is developed for energy management of the PSS. The A-ECMS effectiveness is compared against a dynamic programming (DP) solution with full drive cycle preview through hardware-in-the-loop experiments on an engine dynamometer testbed. The experiments show that the PSS with A-ECMS reduces vehicle fuel consumption by 18.4% over standard FTP75 cycle, compared to a baseline turbocharged engine, while global optimal DP solution decreases the fuel consumption by 22.8% compared to the baseline.


2020 ◽  
Author(s):  
Dionysios Panagiotopoulos ◽  
Bruce Geist ◽  
Douglas Schoeller

2020 ◽  
Vol 40 (4) ◽  
Author(s):  
郭慧 GUO Hui ◽  
董士伟 DONG Shiwei ◽  
吴迪 WU Di ◽  
裴顺祥 PEI Shunxiang ◽  
辛学兵 XIN Xuebing

2019 ◽  
Vol 103 (1) ◽  
pp. 003685041987499 ◽  
Author(s):  
Yang Li ◽  
Xiaohong Jiao

To improve the real-time capability, adaptivity, and efficiency of the energy management strategy in the actual driving cycle, a real-time energy management strategy is investigated for commute hybrid electric vehicles, which integrates mode switching with variable threshold and adaptive equivalent consumption minimization strategy. The proposed strategy includes offline and online parts. In the offline part based on the historical traffic data on the route of the commute vehicle, particle swarm optimization is applied to optimize all the thresholds of mode switching, equivalence factor of the equivalent consumption minimization strategy, and the engine torque and speed at the engine-alone propelling mode so as to establish their mappings on the battery state of charge and power demand. In the online part, the established mappings are involved in the energy management supervisor to generate timely appropriate mode switching signals, and an adaptive equivalence factor for instantaneous optimization equivalent consumption minimization strategy and the optimal engine torque and speed at engine-alone propelling mode. To fully demonstrate the effectiveness of the proposed strategy, the simulation results and comparison with some other strategies and the benchmark dynamic programming strategy are presented by implementing the strategies on the GT-SUITE test platform. The comparison result indicates that the control effect of the proposed energy management strategy is much nearer to that of the benchmark dynamic programming than those of other strategies (the rule-based control, the conventional equivalent consumption minimization strategy, the adaptive equivalent consumption minimization strategy, the rule-based-equivalent consumption minimization strategy, and the stochastic dynamic programming strategy) with the respective improvement in fuel efficiency by 25.9%, 13.25%, 4.6%, 1.32%, and 1.13%.


Author(s):  
Gordana Pehnec ◽  
Ivana Jakovljević

Polycyclic aromatic hydrocarbons (PAHs) that are bound to particulate matter can have adverse effects on human health. Particle size plays an important role in assessing health risks. The aim of this study was to compare concentrations of PAHs bound to particle fractions PM10, PM2.5, and PM1, as well as to estimate their carcinogenic potency and relative contributions of the individual PAHs to the carcinogenic potency in relation to the size of the particle. Measurements of ten PAHs were carried out in 2014 at an urban location in the northern part of Zagreb, Croatia. 24-h samples of the PM10, PM2.5, and PM1 particle fraction were collected over forty days per season. Carcinogenic potency of PAHs was estimated by calculating benzo(a)pyrene equivalent concentrations while using three different toxic equivalence factor (TEF) schemes. The total carcinogenic potency (TCP) and percentage contributions differed significantly depending on the TEF scheme used. The lowest PAH mass concentrations and TCPs were in summer and the highest in winter. The contributions of individual PAHs to the sum of PAH mass concentrations remained similar in all fractions and seasons, while in fractions PM10–2.5 and PM2.5–1 they varied significantly. Road traffic represented the important source of PAHs in all fractions and throughout all seasons. Other sources (wood and biomass burning, petroleum combustion) were also present, especially during winter as a consequence of household heating. The highest contribution to the TCP came from benzo(a)pyrene, dibenzo(ah)antrachene, indeno(1,2,3,cd)pyrene, and benzo(b)fluoranthene (together between 87% and 96%) in all fractions and seasons. In all cases, BaP showed the highest contribution to the TCP regardless relatively low contributions to the mass of total PAHs and it can be considered as a good representative for assessing the carcinogenicity of the PAH mixture. When comparing the TCP of PAHs in PM10 and PM2.5 fractions, it was found that about 21–26% of carcinogenic potency of the PAH mixture belonged to the PM2.5 fraction. Comparison of TCP in PM2.5 and PM1 showed that about 86% of carcinogenic potency belonged to the PM1 fraction, regardless of the TEF scheme used.


Toxins ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 423 ◽  
Author(s):  
Sarah Finch ◽  
Michael Boundy ◽  
D. Harwood

Tetrodotoxin (TTX) is a potent neurotoxin associated with human poisonings through the consumption of pufferfish. More recently, TTX has been identified in bivalve molluscs from diverse geographical environments, including Europe, and is therefore recognised as an emerging threat to food safety. A recent scientific opinion of the EFSA Panel on Contaminants in the Food Chain recognised the need for further data on the acute oral toxicity of TTX and suggested that, since saxitoxin (STX) and TTX had similar modes of action, it was possible that their toxicities were additive so could perhaps be combined to yield one health-based guideline value. The present study determined the toxicity of TTX by various routes of administration. The testing of three different mixtures of STX and TTX and comparing the experimentally determined values to those predicted on the basis of additive toxicity demonstrated that the toxicities of STX and TTX are additive. This illustrates that it is appropriate to treat TTX as a member of the paralytic shellfish group of toxins. Since the toxicity of TTX was found to be the same as STX by feeding, a molar toxicity equivalence factor of 1.0 for TTX can be applied.


2018 ◽  
Vol 11 (2) ◽  
pp. 259-264 ◽  
Author(s):  
T. Grusie ◽  
V. Cowan ◽  
J. Singh ◽  
J. McKinnon ◽  
B. Blakley

Ergot alkaloids, produced by the fungus Claviceps purpurea, are contaminants of cereal crops. Depending on various factors, the relative composition of individual ergot alkaloids can differ among samples. The objective was to determine if the percentage of individual ergot alkaloids were similar across different cereal grains (barley n=39, rye n=7, triticale n=9, wheat n=94) collected in Western Canada over different years. Ergocristine was the predominant alkaloid accounting for half of the total alkaloids in all grain types. This study documented that barley, rye, triticale and wheat collected across Western Canada had similar percentages of ergocornine (6±1%, P=0.201), ergocristine (48±2%, P=0.939), ergocryptine (17±2%, P=0.302) and ergosine (5±0.5%, P=0.239). There were differences between grain types for ergometrine (P=0.027) and ergotamine (P=0.011), which ranged between 6 to 13% and 11 to 24%, respectively, of the total alkaloid content in different cereals. Both barley and wheat alkaloid percentages were similar between 2015 and 2016; ergocornine (7±1%, P=0.969), ergocristine (47±2%, P=0.680), ergocryptine (18±2%, P=0.572), ergometrine (8±1%, P=0.080), ergosine (15±1%, P=0.119) and ergotamine (P=0.189). The ergocornine percentage was higher in wheat (P=0.017) as compared to barley for 2015/2016 samples. Ergometrine was higher in barley (P=0.002) as compared to wheat for 2015/2016 samples. While two of the alkaloid proportions varied statistically, overall proportions of the six ergot alkaloids were comparable among the four grain types collected across Western Canada. If proportions of ergot alkaloids are similar across a region, then it may be deemed acceptable to recommend a maximum total ergot alkaloid concentration for that region. However, areas that exhibit variation among the ergot alkaloid proportions, individual ergot alkaloid guidelines based on a toxic equivalence factor, may be more appropriate. In contrast, since major differences were not seen between years or grain type, from a producer perspective there may be limited biological/toxicological significance for individual alkaloid guidelines.


Sign in / Sign up

Export Citation Format

Share Document