scholarly journals Evaluation of the Effective Active Power Reserve for Fast Frequency Response of PV with BESS Inverters Considering Reactive Power Control

Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3437 ◽  
Author(s):  
Dario Garozzo ◽  
Giuseppe Marco Tina

The increasing presence of distributed generation (DG) in the electrical grid determines new challenges in grid operations, especially in terms of voltage and frequency regulation. Recently, several grid codes have required photovoltaic (PV) inverters to control their reactive power output in order to provide voltage regulation services, and the allocation of a certain amount of active power reserve for fast frequency response (FFR) service during under-frequency contingencies is needed. This requirement involves a significant waste of energy for PV systems, due to the necessity to constantly operate in de-loaded mode, under normal operating conditions. In addition, the variability of the irradiance can affect the correct amount of active power reserve that the system can provide in the moments after an under-frequency occurrence. The increasing number of battery energy storage systems (BESSs), coupled to PV systems, can be used to provide a worthy contribution to this frequency regulation service. The aim of this paper is to analyze the efficiency of active power reserve provided by a BESS connected to the DC bus of a non-ideal grid-connected PV inverter, taking into account the impact of reactive power control. For this purpose, the contribution of BESSs to frequency regulation is discussed and, starting from an existing model of real inverter, an analytical formulation for active power reserve evaluation is presented. Results concerning the impact of reactive power control are also given. Finally, the possibility for a low voltage (LV) grid with aggregated PV systems and BESSs to contribute to grid active power reserve is considered. Different voltage control strategies are compared, defining a helpful new parameter.

Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2078 ◽  
Author(s):  
Soo-Bin Kim ◽  
Seung-Ho Song

A high penetration of distributed generators, such as solar and wind power generators in low voltage network systems, impose voltage rise problems. Reactive power control of distributed generators can contribute to mitigating the voltage rise. In the existing reactive power control, reactive power was controlled using only one local variable, such as voltage at point of connection or the active power output of distributed generator. In case of PF(P) method, which provides certain power factors, depending on the active power of distributed generator, the voltage regulation ability is strong, but network losses are large. Q(V) method, which provides a certain amount of reactive power depending on the local voltage, has few network losses, but the voltage regulation ability is weak. In this paper, a reactive power control method that combines the PF(P) method and Q(V) method was proposed. The proposed method determines the reactive power output by using the active power of the distributed generator and local voltage variables together. The proposed method improves the voltage regulation ability of the reactive power control, while reducing the network losses, as compared to the existing method. The low voltage network system was modeled and simulated to evaluate the performance of the proposed method, in terms of voltage regulation ability and network losses, and the performance of the proposed method and the existing method were compared and analyzed.


Author(s):  
Vasyl Kalinchyk ◽  
Vitaliy Pobigaylo ◽  
Vitaliy Kalinchyk ◽  
Viktor Skosyrev

The article investigates the methods of control of reactive power modes. It is shown that ensuring the efficiency of electricity transmission and distribution is inseparable from setting and solving problems related to reducing electricity losses in networks. Moreover, one of the most effective ways to reduce electricity losses, as well as improve its quality at the terminals of electrical receivers is to compensate for reactive power, which is carried out using various compensating devices. It is shown that the control of the reactive power mode is carried out in accordance with the Methodology for calculating the fee for the flow of reactive energy between the power transmission organization and its consumers. It is shown that the indicator of economically advantageous value of the level of reactive energy consumption can be cos φз, the value of which is predetermined. The procedure for controlling the reactive power mode contains two main stages: the stage of determining the magnitude of the possible reduction of the current cos φ above the set and the stage of determining and implementing control effects aimed at eliminating possible deviations. Preferably, it is preferable to focus on those methods that are based on the study of forecast estimates, which constitute the source information for management decisions. It is expedient to use adaptive methods of exponential smoothing as a basis for operative forecasting of electric loading. Reactive power mode is controlled by compensating units. It is shown that the control of voltage modes in the power supply system significantly affects the modes of reactive power consumption. In this regard, it is advisable to comprehensively solve the problem of reactive power control both by controlling the compensating units and the impact on the voltage regimes of the power supply system. In the calculation model, the reactive load of the distribution network is given by its static characteristics, which can be the basis for regulating the reactive load. To implement regulation in the power supply centers of electrical networks, technical means are provided on the basis of changing the transformation coefficient or generating reactive power by counter-voltage regulation.


2020 ◽  
Vol 140 (6) ◽  
pp. 484-494
Author(s):  
Akihisa Kaneko ◽  
Shinya Yoshizawa ◽  
Yasuhiro Hayashi ◽  
Shuhei Sugimura ◽  
Yoshinobu Ueda ◽  
...  

2021 ◽  
pp. 1-1
Author(s):  
Jiakang Yang ◽  
Wayes Tushar ◽  
Tapan K. Saha ◽  
Mollah R. Alam ◽  
Yong Li

2017 ◽  
Vol 201 (1) ◽  
pp. 38-56 ◽  
Author(s):  
KOUICHIRO KOUNO ◽  
EIJI NAKANISHI ◽  
YOSHIAKI NAGANO ◽  
MASAHIDE HOJO

Sign in / Sign up

Export Citation Format

Share Document