Prosumer-Driven Voltage Regulation via Coordinated Real and Reactive Power Control

2021 ◽  
pp. 1-1
Author(s):  
Jiakang Yang ◽  
Wayes Tushar ◽  
Tapan K. Saha ◽  
Mollah R. Alam ◽  
Yong Li
2017 ◽  
Vol 201 (1) ◽  
pp. 38-56 ◽  
Author(s):  
KOUICHIRO KOUNO ◽  
EIJI NAKANISHI ◽  
YOSHIAKI NAGANO ◽  
MASAHIDE HOJO

Author(s):  
Georgios C. Kryonidis ◽  
Kyriaki-Nefeli D Malamaki ◽  
Spyros I. Gkavanoudis ◽  
Konstantinos Oureilidis ◽  
Eleftherios O Kontis ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2078 ◽  
Author(s):  
Soo-Bin Kim ◽  
Seung-Ho Song

A high penetration of distributed generators, such as solar and wind power generators in low voltage network systems, impose voltage rise problems. Reactive power control of distributed generators can contribute to mitigating the voltage rise. In the existing reactive power control, reactive power was controlled using only one local variable, such as voltage at point of connection or the active power output of distributed generator. In case of PF(P) method, which provides certain power factors, depending on the active power of distributed generator, the voltage regulation ability is strong, but network losses are large. Q(V) method, which provides a certain amount of reactive power depending on the local voltage, has few network losses, but the voltage regulation ability is weak. In this paper, a reactive power control method that combines the PF(P) method and Q(V) method was proposed. The proposed method determines the reactive power output by using the active power of the distributed generator and local voltage variables together. The proposed method improves the voltage regulation ability of the reactive power control, while reducing the network losses, as compared to the existing method. The low voltage network system was modeled and simulated to evaluate the performance of the proposed method, in terms of voltage regulation ability and network losses, and the performance of the proposed method and the existing method were compared and analyzed.


Author(s):  
Hany E. Farag ◽  
Ehab F. El-Saadany ◽  
Ravi Seethapathy

This paper has been arisen to show the necessity of the evolution for voltage and reactive power control in distribution systems from conventional to active control techniques. The paper addresses the drawbacks and conflicts that the conventional voltage and reactive power control schemes will face in future distribution systems, especially with high penetration of Distributed Generation (DG). Some of these drawbacks have been verified by carrying out various simulation studies for different IEEE unbalanced radial distribution test systems. The results show that applying the conventional utility voltage regulation control practices in smart grid configuration is intolerable. Therefore, the issue of voltage and reactive power control in smart distribution systems is significant and an evolution of the current control schemes from passive to active is necessary. Using the smart grid technologies, a distributed single layer cooperative control scheme between substation regulators, line regulators and DG units has been proposed. The proposed cooperative scheme is based on the concept of multi-agent systems. Simulation results have been carried out to show the effectiveness of the proposed control scheme.


Author(s):  
Vasyl Kalinchyk ◽  
Vitaliy Pobigaylo ◽  
Vitaliy Kalinchyk ◽  
Viktor Skosyrev

The article investigates the methods of control of reactive power modes. It is shown that ensuring the efficiency of electricity transmission and distribution is inseparable from setting and solving problems related to reducing electricity losses in networks. Moreover, one of the most effective ways to reduce electricity losses, as well as improve its quality at the terminals of electrical receivers is to compensate for reactive power, which is carried out using various compensating devices. It is shown that the control of the reactive power mode is carried out in accordance with the Methodology for calculating the fee for the flow of reactive energy between the power transmission organization and its consumers. It is shown that the indicator of economically advantageous value of the level of reactive energy consumption can be cos φз, the value of which is predetermined. The procedure for controlling the reactive power mode contains two main stages: the stage of determining the magnitude of the possible reduction of the current cos φ above the set and the stage of determining and implementing control effects aimed at eliminating possible deviations. Preferably, it is preferable to focus on those methods that are based on the study of forecast estimates, which constitute the source information for management decisions. It is expedient to use adaptive methods of exponential smoothing as a basis for operative forecasting of electric loading. Reactive power mode is controlled by compensating units. It is shown that the control of voltage modes in the power supply system significantly affects the modes of reactive power consumption. In this regard, it is advisable to comprehensively solve the problem of reactive power control both by controlling the compensating units and the impact on the voltage regimes of the power supply system. In the calculation model, the reactive load of the distribution network is given by its static characteristics, which can be the basis for regulating the reactive load. To implement regulation in the power supply centers of electrical networks, technical means are provided on the basis of changing the transformation coefficient or generating reactive power by counter-voltage regulation.


Sign in / Sign up

Export Citation Format

Share Document