scholarly journals Thermodynamic and Economic Analyses of a New Waste-to-Energy System Incorporated with a Biomass-Fired Power Plant

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4345
Author(s):  
Peiyuan Pan ◽  
Meiyan Zhang ◽  
Gang Xu ◽  
Heng Chen ◽  
Xiaona Song ◽  
...  

A novel design has been developed to improve the waste-to-energy process through the integration with a biomass-fired power plant. In the proposed scheme, the superheated steam generated by the waste-to-energy boiler is fed into the low-pressure turbine of the biomass power section for power production. Besides, the feedwater from the biomass power section is utilized to warm the combustion air of the waste-to-energy boiler, and the feedwater of the waste-to-energy boiler is offered by the biomass power section. Based on a 35-MW biomass-fired power plant and a 500-t/d waste-to-energy plant, the integrated design was thermodynamically and economically assessed. The results indicate that the net power generated from waste can be enhanced by 0.66 MW due to the proposed solution, and the waste-to-electricity efficiency increases from 20.49% to 22.12%. Moreover, the net present value of the waste-to-energy section is raised by 5.02 million USD, and the dynamic payback period is cut down by 2.81 years. Energy and exergy analyses were conducted to reveal the inherent mechanism of performance enhancement. Besides, a sensitivity investigation was undertaken to examine the performance of the new design under various conditions. The insights gained from this study may be of assistance to the advancement of waste-to-energy technology.

2022 ◽  
Vol 12 (2) ◽  
pp. 866
Author(s):  
Yuanyuan Zhang ◽  
Lai Wei ◽  
Xin Gao ◽  
Heng Chen ◽  
Qiubai Li ◽  
...  

An innovative hybrid energy system consisting of a waste-to-energy unit and a coal-fired power unit is designed to enhance the energy recovery of waste and decrease the investment costs of waste-to-energy unit. In this integrated design, partial cold reheat steam of the coal-fired unit is heated by the waste-to-energy boiler’s superheater. The heat required for partial preheated air of waste-to-energy unit and its feedwater are supplied by the feedwater of CFPU. In addition, an additional evaporator is deployed in the waste-to-energy boiler, of which the outlet stream is utilized to provide the heat source for the urea hydrolysis unit of coal-fired power plant. The stand-alone and proposed designs are analyzed and compared through thermodynamic and economic methods. Results indicate that the net total energy efficiency increases from 41.84% to 42.12%, and the net total exergy efficiency rises from 41.19% to 41.46% after system integration. Moreover, the energy efficiency and exergy efficiency of waste-to-energy system are enhanced by 10.48% and 9.92%, respectively. The dynamic payback period of new waste-to-energy system is cut down from 11.39 years to 5.48 years, and an additional net present value of $14.42 million is got than before.


Author(s):  
W. H. Jonathan Mak ◽  
Michel-Alexandre Cardin ◽  
Liu Ziqi ◽  
P. John Clarkson

The concept of resilience has emerged from various domains to address how systems, people and organizations can handle uncertainty. This paper presents a method to improve the resilience of an engineering system by maximizing the system economic lifecycle value, as measured by Net Present Value, under uncertainty. The method is applied to a Waste-to-Energy system based in Singapore and the impact of combining robust and flexible design strategies to improve resilience are discussed. Robust strategies involve optimizing the initial capacity of the system while Bayesian Networks are implemented to choose the flexible expansion strategy that should be deployed given the current observations of demand uncertainties. The Bayesian Network shows promise and should be considered further where decisions are more complex. Resilience is further assessed by varying the volatility of the stochastic demand in the simulation. Increasing volatility generally made the system perform worse since not all demand could be converted to revenue due to capacity constraints. Flexibility shows increased value compared to a fixed design. However, when the system is allowed to upgrade too often, the costs of implementation negates the revenue increase. The better design is to have a high initial capacity, such that there is less restriction on the demand with two or three expansions.


2019 ◽  
Vol 37 (4) ◽  
pp. 419-434
Author(s):  
B Mendecka ◽  
L Lombardi ◽  
Pawel Gladysz

Hybridisation of waste to energy with solar facility can take competing energy technologies and make them complementary. However, realising the benefits of solar integration requires careful consideration of the technical feasibility as well as the economic and environmental benefits of a proposed system. In this work, a solar-integrated waste-to-energy plant scheme is proposed and analysed from an energy, environmental and economic point of view. The new system integrates a traditional waste-to-energy plant with a concentrated solar power plant, by superheating the steam produced by the waste-to-energy flue gas boiler in the solar facility. The original waste-to-energy plant – that is, the base case before introducing the integration with concentrated solar power – has a thermal power input of 50 MW and operates with superheated steam at 40 bar and 400 °C; net power output is 10.7 MW, and the net energy efficiency is equal to 21.65%. By combining waste-to-energy plant with the solar facility, the power plant could provide higher net efficiency (from 1.4 to 3.7 p.p. higher), lower specific CO2 emissions (from 69 to 180 kg MWh-1 lower) and lower levellised cost of electricity (from 13.4 to 42.3 EUR MWh-1 lower) comparing with the standalone waste to energy case. The study shows that: (i) in the integrated case and for the increasing steam parameters energy, economic and ecological performances are improved; (ii) increasing the solar contribution could be an efficient way to improve the process and system performances. In general, we can conclude that concentrated solar-power technology holds significant promise for extending and developing the waste to energy systems.


2020 ◽  
Vol 40 ◽  
pp. 100759
Author(s):  
Ehsan Akrami ◽  
Mohammad Ameri ◽  
Matteo V. Rocco ◽  
Francesco D. Sanvito ◽  
Emanuela Colombo

2019 ◽  
Vol 8 (4) ◽  
pp. 119 ◽  
Author(s):  
Junior Lorenzo Llanes ◽  
Efstratios Kalogirou

Havana has the highest population and consequently generation of municipal solid wastes (MSW) in Cuba. In Havana, the final deposition method for MSW is mainly landfills. However, in most cases, they exceed their lifetime of operation becoming in reality dumpsites without energy recovery from wastes. In this regard, waste-to-energy is a well-established technology for MSW treatment. The aim of this work was to carry out a techno-economic assessment for a proposed waste-to-energy plant in the city of Havana. A step-wise methodology based on two process analysis tools (i.e., Excel and Aspen Plus models) was used for the technical evaluation. Simulation results are in agreement with data from real plants, showing that it is possible to produce 227.1 GWh of electricity per year, representing 6% of the current demand in Havana. The economic analysis showed the feasibility of the project with a net present value of 35,483,853 USD. Results from the sensitivity analyses show the effect of the economy of scale when changes in low heating value were considered. Finally, a hypothetical best scenario was studied considering the net effect on the average Cuban salary.


Energy ◽  
2019 ◽  
Vol 169 ◽  
pp. 61-78 ◽  
Author(s):  
Mehdi Mehrpooya ◽  
Mohammad Mehdi Moftakhari Sharifzadeh ◽  
Seyed Ali Mousavi

2018 ◽  
Vol 140 ◽  
pp. 520-530 ◽  
Author(s):  
Sina Azami ◽  
Mina Taheri ◽  
Omid Pourali ◽  
Farschad Torabi

Energy ◽  
2020 ◽  
Vol 194 ◽  
pp. 116893 ◽  
Author(s):  
Heng Chen ◽  
Meiyan Zhang ◽  
Kai Xue ◽  
Gang Xu ◽  
Yongping Yang ◽  
...  

2018 ◽  
Vol 3 (7) ◽  
pp. 50
Author(s):  
Anthony Kpegele Le-ol ◽  
Sidum Adumene ◽  
Kenneth Israel

This work presents a comparative analysis of the thermo-economic performance of a simple, retrofitted and built-in combined cycle power plants within the Delta. The data were obtained from a 25MW gas turbine plant-based engine, retrofitted and MATLAB software was used to model the thermodynamic performance of the plants. The economic prediction of the plants was done using a developed net present value(NPV), internal rate of return (IRR), cost of investment (COR) and payback period (PBP).  The economic concept for plants performance was analysed under uncertainty constraints of energy need, operating conditions, energy cost and energy supply variability. Three plants configuration; simple gas turbine (SGT), retrofitted combined cycle (RCC) and Built-in combined cycle (BCC) was analysed based on these economic performance indicators. The three configurations show a positive NPV, PBP and IRR, with the BCC showing the optimum return on investment. Although the RCC show minimum initial cost on investment compare to BCC, the BCC demonstrates greater overall return with an NPV of $30,755,454.18, IRR of 17.1% and PBP of 6.3years for the period of 20years. The analysis shows cash flow of 34.1% and 52.6% for the RCC and BCC respectively. The result also showed that the plant performs better at a lower ambient temperature and higher relative humidity with a higher return on investment. This research provides great insight into the thermo-economic analysis, and benefits of combined cycle power plant and will aid energy system investors on the choice of the power plant for power generation in the Niger Delta.


2021 ◽  
Author(s):  
Huijuan Zhang ◽  
Morteza Bayati ◽  
M. A. Ehyaei ◽  
A. Ahmadi ◽  
V. A. F. Costa

Abstract This research is devoted to the energy, exergy, and economic analyses and optimization of a heliostat field. The model of the heliostat solar receiver includes detailed geometric factors related to the optical and thermal losses and efficiencies throughout the year. The main parameters of the thermal performance of this system consist of energy and exergy efficiencies, and economic parameters are investigated. By computing the energy, exergy, and economic analysis tools, they are applied for the analysis of performance, and viability of the system’s operating in Tehran City, including the detailed information of the environmental conditions of that location. For optimization purposes, 7 design variables related to geometric specification of the heliostat field are selected and the related lower and upper bonds are selected. Two target functions considered for the optimization are heliostat field exergy efficiency and payback period. The economic feasibility results of this study reveal that the net present value is 58.84 million US$, the payback period is 6.76 years, and the internal rate of return is 0.16. By considering the MOPSO algorithml, the annual mean exergy efficiency is increased from the 30.9–34.3% while the heliostat field payback period in reduced from the 6.76 to 4.3 years.


Sign in / Sign up

Export Citation Format

Share Document