scholarly journals A Multi-Agent NILM Architecture for Event Detection and Load Classification

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4396
Author(s):  
André Eugenio Lazzaretti ◽  
Douglas Paulo Bertrand Renaux ◽  
Carlos Raimundo Erig Lima ◽  
Bruna Machado Mulinari ◽  
Hellen Cristina Ancelmo ◽  
...  

A multi-agent architecture for a Non-Intrusive Load Monitoring (NILM) solution is presented and evaluated. The underlying rationale for such an architecture is that each agent (load event detection, feature extraction, and classification) outperforms others of the same type in particular scenarios; hence, by combining the expertise of these agents, the system presents an improved performance. Known NILM algorithms, as well as new algorithms, proposed by the authors, were individually evaluated and compared. The proposed architecture considers a NILM system composed of Load Monitoring Modules (LMM) that report to a Center of Operations, required in larger facilities. For the purposed of evaluating and comparing performance, five load event detect agents, five feature extraction agents, and five classification agents were studied so that the best combinations of agents could be implemented in LMMs. To evaluate the proposed system, the COOLL and the LIT-Dataset were used. Performance improvements were detected in all scenarios, with power-ON and power-OFF detection improving up to 13%, while classification accuracy improved up to 9.4%.

Author(s):  
Fabiana Pottker ◽  
Andre E. Lazzaretti ◽  
Douglas P. B. Renaux ◽  
Robson R. Linhares ◽  
Carlos R. E. Lima ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7630
Author(s):  
Joonho Seon ◽  
Youngghyu Sun ◽  
Soohyun Kim ◽  
Jinyoung Kim

In this paper, a time-lapse image method is proposed to improve the classification accuracy for multistate appliances with complex patterns based on nonintrusive load monitoring (NILM). A log-likelihood ratio detector with a maxima algorithm was applied to construct a real-time event detection of home appliances. Moreover, a novel image-combining method was employed to extract information from the data based on the Gramian angular field (GAF) and recurrence plot (RP) transformations. From the simulation results, it was confirmed that the classification accuracy can be increased by up to 30% with the proposed method compared with the conventional approaches in classifying multistate appliances.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 916 ◽  
Author(s):  
Wen Cao ◽  
Chunmei Liu ◽  
Pengfei Jia

Aroma plays a significant role in the quality of citrus fruits and processed products. The detection and analysis of citrus volatiles can be measured by an electronic nose (E-nose); in this paper, an E-nose is employed to classify the juice which is stored for different days. Feature extraction and classification are two important requirements for an E-nose. During the training process, a classifier can optimize its own parameters to achieve a better classification accuracy but cannot decide its input data which is treated by feature extraction methods, so the classification result is not always ideal. Label consistent KSVD (L-KSVD) is a novel technique which can extract the feature and classify the data at the same time, and such an operation can improve the classification accuracy. We propose an enhanced L-KSVD called E-LCKSVD for E-nose in this paper. During E-LCKSVD, we introduce a kernel function to the traditional L-KSVD and present a new initialization technique of its dictionary; finally, the weighted coefficients of different parts of its object function is studied, and enhanced quantum-behaved particle swarm optimization (EQPSO) is employed to optimize these coefficients. During the experimental section, we firstly find the classification accuracy of KSVD, and L-KSVD is improved with the help of the kernel function; this can prove that their ability of dealing nonlinear data is improved. Then, we compare the results of different dictionary initialization techniques and prove our proposed method is better. Finally, we find the optimal value of the weighted coefficients of the object function of E-LCKSVD that can make E-nose reach a better performance.


Author(s):  
Qiuzhan Zhou ◽  
Jiahui Wei ◽  
Mingyu Sun ◽  
Cong Wang ◽  
Jing Rong ◽  
...  

2021 ◽  
Vol 13 (10) ◽  
pp. 1950
Author(s):  
Cuiping Shi ◽  
Xin Zhao ◽  
Liguo Wang

In recent years, with the rapid development of computer vision, increasing attention has been paid to remote sensing image scene classification. To improve the classification performance, many studies have increased the depth of convolutional neural networks (CNNs) and expanded the width of the network to extract more deep features, thereby increasing the complexity of the model. To solve this problem, in this paper, we propose a lightweight convolutional neural network based on attention-oriented multi-branch feature fusion (AMB-CNN) for remote sensing image scene classification. Firstly, we propose two convolution combination modules for feature extraction, through which the deep features of images can be fully extracted with multi convolution cooperation. Then, the weights of the feature are calculated, and the extracted deep features are sent to the attention mechanism for further feature extraction. Next, all of the extracted features are fused by multiple branches. Finally, depth separable convolution and asymmetric convolution are implemented to greatly reduce the number of parameters. The experimental results show that, compared with some state-of-the-art methods, the proposed method still has a great advantage in classification accuracy with very few parameters.


Sign in / Sign up

Export Citation Format

Share Document