scholarly journals An Evaluation of the Economic and Resilience Benefits of a Microgrid in Northampton, Massachusetts

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4802
Author(s):  
Patrick Balducci ◽  
Kendall Mongird ◽  
Di Wu ◽  
Dexin Wang ◽  
Vanshika Fotedar ◽  
...  

Recent developments and advances in distributed energy resource (DER) technologies make them valuable assets in microgrids. This paper presents an innovative evaluation framework for microgrid assets to capture economic benefits from various grid and behind-the-meter services in grid-connecting mode and resilience benefits in islanding mode. In particular, a linear programming formulation is used to model different services and DER operational constraints to determine the optimal DER dispatch to maximize economic benefits. For the resiliency analysis, a stochastic evaluation procedure is proposed to explicitly quantify the microgrid survivability against a random outage, considering uncertainties associated with photovoltaic (PV) generation, system load, and distributed generator failures. Optimal coordination strategies are developed to minimize unserved energy and improve system survivability, considering different levels of system connectedness. The proposed framework has been applied to evaluate a proposed microgrid in Northampton, Massachusetts that would link the Northampton Department of Public Works, Cooley Dickenson Hospital, and Smith Vocational Area High School. The findings of this analysis indicate that over a 20-year economic life, a 441 kW/441 kWh battery energy storage system, and 386 kW PV solar array can generate $2.5 million in present value benefits, yielding a 1.16 return on investment ratio. Results of this study also show that forming a microgrid generally improves system survivability, but the resilience performance of individual facilities varies depending on power-sharing strategies.

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2773
Author(s):  
Petros Siritoglou ◽  
Giovanna Oriti ◽  
Douglas L. Van Bossuyt

This paper presents a user-friendly design method for accurately sizing the distributed energy resources of a stand-alone microgrid to meet the critical load demands of a military, commercial, industrial, or residential facility when utility power is not available. The microgrid combines renewable resources such as photovoltaics (PV) with an energy-storage system to increase energy security for facilities with critical loads. The design method’s novelty complies with IEEE Standards 1562 and 1013, and addresses resilience, which is not taken into account in existing design methods. Several case studies simulated with a physics-based model validate the proposed design method and demonstrate how resilience can be included in the design process. Additionally, the design and the simulations were validated by 24 h laboratory experiments conducted on a microgrid assembled using commercial off-the-shelf components.


Author(s):  
Alexander Headley ◽  
Benjamin Schenkman ◽  
Keith Olson ◽  
Laurence Sombardier

Abstract The Natural Energy Laboratory of Hawaii Authority’s (NELHA) campus on The Island of Hawai’i supplies resources for a number of renewable energy and aquaculture research projects. There is a growing interest at NELHA to convert the research campus to a 100% renewable, islanded microgrid to improve the resiliency of the campus for critical ocean water pumping loads and to limit the increase in the long-term cost of operations. Currently, the campus has solar array to cover some electricity needs but scaling up this system to fully meet the needs of the entire research campus will require significant changes and careful planning to minimize costs. This study will investigate least-cost solar and energy storage system sizes capable of meeting the needs of the campus. The campus is split into two major load centers that are electrically isolated and have different amounts of available land for solar installations. The value of adding an electrical transmission line if NELHA converts to a self-contained microgrid is explored by estimating the cost of resources for each load center individually and combined. Energy storage using lithium-ion and hydrogen-based technologies is investigated. For the hydrogen-based storage system, a variable efficiency and fixed efficiency representation of the electrolysis and fuel cell systems are used. Results using these two models show the importance of considering the changing performance of hydrogen systems for sizing algorithms.


2021 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Chris Ogwumike ◽  
Huda Dawood ◽  
Tariq Ahmed ◽  
Bjarnhedinn Gudlaugsson ◽  
Nashwan Dawood

This paper presents an assessment of the impacts of the different tools implemented within the inteGRIDy project through the analysis of key performance indicators (KPIs) that appropriately reflect the technical and economic domains of the inteGRIDy thematic pillars, comprising demand response and battery storage systems. The evaluation is based on improvements brought about by individual components of the inteGRIDy-enabled smart solution across the Isle of Wight (IOW) pilot site. The analyses and the interpretation of findings for the pilot use case evaluation are presented. The results indicate that the smart solution implementation across the IOW pilot site resulted in achieving the inteGRIDy set objectives. Overall, a 93% reduction in energy consumption, equivalent to 643 kWh was achieved, via the M7 energy storage system and heat pumps developed as part of inteGRIDy solution. Additionally, the grid efficiency and demand flexibility contribution to the distribution network operator (DNO)-triggered DR services, based on a 10% increase/decrease in demand, resulted in stabilizing the grid efficiency.


Entropy ◽  
2020 ◽  
Vol 22 (7) ◽  
pp. 764
Author(s):  
Xiaotao Chen ◽  
Xiaodai Xue ◽  
Yang Si ◽  
Chengkui Liu ◽  
Laijun Chen ◽  
...  

The comprehensive utilization technology of combined cooling, heating and power (CCHP) systems is the leading edge of renewable and sustainable energy research. In this paper, we propose a novel CCHP system based on a hybrid trigenerative compressed air energy storage system (HT-CAES), which can meet various forms of energy demand. A comprehensive thermodynamic model of the HT-CAES has been carried out, and a thermodynamic performance analysis with energy and exergy methods has been done. Furthermore, a sensitivity analysis and assessment capacity for CHP is investigated by the critical parameters effected on the performance of the HT-CAES. The results indicate that round-trip efficiency, electricity storage efficiency, and exergy efficiency can reach 73%, 53.6%, and 50.6%, respectively. Therefore, the system proposed in this paper has high efficiency and flexibility to jointly supply multiple energy to meet demands, so it has broad prospects in regions with abundant solar energy resource.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1991 ◽  
Author(s):  
Suyang Zhou ◽  
Yuxuan Zhuang ◽  
Wei Gu ◽  
Zhi Wu

It is anticipated that the penetration of “Green-Energy” vehicles, including Electric Vehicle (EV), Fuel Cell Vehicle (FCV), and Natural Gas Vehicle (NGV) will keep increasing in next decades. The demand of refueling stations will correspondingly increase for refueling these “Green-Energy” vehicles. While such kinds of “Green-Energy” vehicles can provide both social and economic benefits, effective management of refueling various kinds of these vehicles is necessary to maintain vehicle users’ comfortabilities and refueling station’s return on investment. To tackle these problems, this paper proposes a novel energy management approach for hybrid refueling stations with EV chargers, Hydrogen pumps and gas pumps. Firstly, the detailed models of EV chargers, Hydrogen pumps with electrolyte and hydrogen tank, the gas pumps with gas tank, renewable resources, and battery energy storage systems are established. The forecasting methodologies for renewable energy, electricity price and the traffic flow are also presented to support the hybrid refueling station modeling and operation. Then, a management approach is adopted to manage the refueling various kinds of vehicles with considerations of the refueling station profitability. Finally, the proposed management approach is verified under four different kinds of tariffs- Economy-7, Economy-10, Flat-rate, and Real-Time Pricing (RTP), finding that the proposed management approach has the best performance under RTP tariff. The economic assessment of the Energy Storage System (ESS) is also performed. It is found that the ESS can make the saving up to $127 per day. Different sizes of gas storage tank are compared in the final section as well. The result shows that increasing the size of the tank does not bring attractive extra benefits with the consideration of the investment on enlarging the tank size.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3201
Author(s):  
Marino Coppola ◽  
Pierluigi Guerriero ◽  
Adolfo Dannier ◽  
Santolo Daliento ◽  
Davide Lauria ◽  
...  

The paper deals with design and control of a fault tolerant and reconfigurable photovoltaic converter integrating a Battery Energy Storage System as a standby backup energy resource. When a failure occurs, an appropriate control method makes the energy conversion system capable of operating in open-delta configuration in parallel with the grid as well as in islanded mode. In case network voltage is lacking due to heavy anomalies or maintenance reasons, the proposed control system is able to quickly disconnect the inverter from the grid while ensuring the energy continuity to the local load and the emergency fixtures by means of the integrated battery packs. In particular, the paper proposes a fast islanding detection method essential for the correct operation of the control system. This specific technique is based on the Hilbert transform of the voltage of the point of common coupling, and it identifies the utility lack in a period of time equal to half a grid cycle in the best case (i.e., 10 ms), thus resulting in good speed performance fully meeting the standard requirements. A thorough numerical investigation is carried out with reference to a representative case study in order to demonstrate the feasibility and the effectiveness of the proposed control strategy.


2014 ◽  
Vol 953-954 ◽  
pp. 771-774
Author(s):  
Xiao Ting Wu ◽  
Ling Xia Kong ◽  
Chun Mei Guo ◽  
Bin Hu

This paper makes an introduction of the working principle and the technical and economic benefits of the combined ground-source heat pump and water energy storage system. And then according to the characteristic of this system itself and its mode of operation, we can point out that the energy storage rate, the local policy of electricity price and the strategy of operation are the main factors which influent the economic characteristics of the system. Using the initial investment and the operation cost of the system as the economy evaluation index, we respectively analyze the influence of the above factors on the index. And wish the results of the analysis can provide reference on the design of this new type air-conditioning system.


2014 ◽  
Vol 672-674 ◽  
pp. 503-508
Author(s):  
Yi Feng ◽  
Lei Jun Shao ◽  
Bang Ling Zhang ◽  
Jing Ying Xie ◽  
Bo Sun ◽  
...  

The active distribution network is an effective approach to solve the problem such as the high penetration of intermittent renewable energy. This paper constructs single and hybrid energy storage battery systems in the active distribution network, calculates the economic benefits of the single and hybrid energy storage systems from six aspects in annual electricity sale revenue, ancillary revenue, investment cost, maintenance cost, landed cost and power shortage punishment cost. Take the lithium iron phosphate battery as single system, the lithium iron phosphate battery and Lithium titanate battery as the hybrid system to compute the cost benefit. The results show that the storage systems have effects to the intermittent renewable energy in peak shaving. Since the hybrid energy storage system can obtain more annual ancillary revenue, and the batteries’ work life is longer, it has more advantage in economic benefits than the single energy storage system.


2020 ◽  
Author(s):  
Alexander Headley ◽  
Benjamin Schenkman ◽  
Keith Olson ◽  
Laurence Sombardier

Abstract The Natural Energy Laboratory of Hawaii Authority’s (NELHA) campus on The Island of Hawai’i supplies resources for a number of renewable energy and aquaculture research projects. There is a growing interest at NELHA to convert the research campus to a 100% renewable, islanded microgrid to improve the resiliency of the campus for critical ocean water pumping loads and to limit the increase in the long-term cost of operations. Currently, the campus has solar array to cover some electricity needs but scaling up this system to fully meet the needs of the entire research campus will require significant changes and careful planning to minimize costs. This study will investigate least-cost solar and energy storage system sizes capable of meeting the needs of the campus. The campus is split into two major load centers that are electrically isolated and have different amounts of available land for solar installations. The value of adding an electrical transmission line if NELHA converts to a self-contained microgrid is explored by estimating the cost of resources for each load center individually and combined. Energy storage using lithium-ion and hydrogen-based technologies is investigated. For the hydrogen-based storage system, a variable efficiency and fixed efficiency representation of the electrolysis and fuel cell systems are used. Results using these two models show the importance of considering the changing performance of hydrogen systems for sizing algorithms.


Sign in / Sign up

Export Citation Format

Share Document