scholarly journals Ecological Scarcity Based Impact Assessment for a Decentralised Renewable Energy System

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5655
Author(s):  
Hendrik Lambrecht ◽  
Steffen Lewerenz ◽  
Heidi Hottenroth ◽  
Ingela Tietze ◽  
Tobias Viere

Increasing the share of renewable energies in electricity and heat generation is the cornerstone of a climate-friendly energy transition. However, as renewable technologies rely on diverse natural resources, the design of decarbonized energy systems inevitably leads to environmental trade-offs. This paper presents the case study of a comprehensive impact assessment for different future development scenarios of a decentralized renewable energy system in Germany. It applies an adapted ecological scarcity method (ESM) that improves decision-support by ranking the investigated scenarios and revealing their main environmental shortcomings: increased mineral resource use and pollutant emissions due to required technical infrastructure and a substantial increase in land use due to biomass combustion. Concerning the case study, the paper suggests extending the set of considered options, e.g., towards including imported wind energy. More generally, the findings underline the need for a comprehensive environmental assessment of renewable energy systems that integrate electricity supply with heating, cooling, and mobility. On a methodical level, the ESM turns out to be a transparent and well adaptable method to analyze environmental trade-offs from renewable energy supply. It currently suffers from missing quantitative targets that are democratically sufficiently legitimized. At the same time, it can provide a sound basis for an informed discussion on such targets.

2021 ◽  
Author(s):  
Nicholas Martin ◽  
Cristina Madrid-López ◽  
Laura Talens-Peiró ◽  
Bryn Pickering

<p>A decarbonized, renewable energy system is generally assumed to represent a cleaner and more sustainable one. However, while they do promise day-to-day reductions in carbon emissions, many other environmental impacts could occur, and these are often overlooked. Indeed, in the two documents that form the EU Energy Union Strategy (COM/2015/080) the words ‘water’, ‘biodiversity’ or ‘raw materials’ do not appear. This ‘tunnel vision’ is often also adopted in current energy systems models, which do not generally provide a detailed analysis of all of the environmental impacts that accompany different energy scenarios. Ignoring the trade-offs between energy systems and other resources can result in misleading information and misguided policy making.</p><p>The environmental assessment module ENVIRO combines the bottom up, high resolution capabilities of life cycle assessment (LCA) with the hierarchical multi-scale upscaling capabilities of the Multi-Scale Integrated Assessment of Socioecosystem Metabolism (MuSIASEM) approach in an effort to address this gap. ENVIRO also takes the systemic trade-offs associated with the water-energy-food-(land-climate-etc.) nexus from MuSIASEM while considering the supply chain perspective of LCA. The module contains a built-in set of indicators that serve to assess the constraints that greenhouse gas (GHG) emissions, pollution, water use and raw material demands pose to renewable energy system scenarios. It can be used to assess the coherence between energy decarbonization targets and water or raw material targets; this can be extended to potentially any economic or political target that has a biophysical component.</p><p>In this work, we introduce the semantics and formalization aspects of ENVIRO, its integration with the energy system model Calliope, and the results of a first testing of the module in the assessment of decarbonization scenarios for the EU. The work is part of the research developed in the H2020 Project SENTINEL: Sustainable Energy Transition Laboratory (contract 837089).</p>


2021 ◽  
Vol 13 (11) ◽  
pp. 6107
Author(s):  
Kim Maya Yavor ◽  
Vanessa Bach ◽  
Matthias Finkbeiner

The reduction of greenhouse gas emissions by the energy transition may lead to trade-offs with other impacts on the environment, society, and economy. One challenge is resource use impacts due to increasing demand for high-tech metals and minerals. A review of the current state of the art resource assessment of energy systems was conducted to identify gaps in research and application. Publications covering complete energy systems and supplying a detailed resource assessment were the focus of the evaluation. Overall, 92 publications were identified and categorized by the type of system covered and the applied abiotic resource assessment methods. A total of 78 out of 92 publications covered sub-systems of renewable energy systems, and nine considered complete energy systems and conducted a detailed resource use assessment. Most of the publications in the group “complete energy system and detailed resource assessment” were found in grey literature. Several different aspects were covered to assess resource use. Thirty publications focused on similar aspects including criticality and supply risks, but technology-specific aspects are rarely assessed in the resource assessment of renewable energy systems. Few publications included sector coupling technologies, and among the publications most relevant to the aim of this paper one third did not conduct an indicator-driven assessment.


Sign in / Sign up

Export Citation Format

Share Document