scholarly journals Resource Assessment of Renewable Energy Systems—A Review

2021 ◽  
Vol 13 (11) ◽  
pp. 6107
Author(s):  
Kim Maya Yavor ◽  
Vanessa Bach ◽  
Matthias Finkbeiner

The reduction of greenhouse gas emissions by the energy transition may lead to trade-offs with other impacts on the environment, society, and economy. One challenge is resource use impacts due to increasing demand for high-tech metals and minerals. A review of the current state of the art resource assessment of energy systems was conducted to identify gaps in research and application. Publications covering complete energy systems and supplying a detailed resource assessment were the focus of the evaluation. Overall, 92 publications were identified and categorized by the type of system covered and the applied abiotic resource assessment methods. A total of 78 out of 92 publications covered sub-systems of renewable energy systems, and nine considered complete energy systems and conducted a detailed resource use assessment. Most of the publications in the group “complete energy system and detailed resource assessment” were found in grey literature. Several different aspects were covered to assess resource use. Thirty publications focused on similar aspects including criticality and supply risks, but technology-specific aspects are rarely assessed in the resource assessment of renewable energy systems. Few publications included sector coupling technologies, and among the publications most relevant to the aim of this paper one third did not conduct an indicator-driven assessment.

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5655
Author(s):  
Hendrik Lambrecht ◽  
Steffen Lewerenz ◽  
Heidi Hottenroth ◽  
Ingela Tietze ◽  
Tobias Viere

Increasing the share of renewable energies in electricity and heat generation is the cornerstone of a climate-friendly energy transition. However, as renewable technologies rely on diverse natural resources, the design of decarbonized energy systems inevitably leads to environmental trade-offs. This paper presents the case study of a comprehensive impact assessment for different future development scenarios of a decentralized renewable energy system in Germany. It applies an adapted ecological scarcity method (ESM) that improves decision-support by ranking the investigated scenarios and revealing their main environmental shortcomings: increased mineral resource use and pollutant emissions due to required technical infrastructure and a substantial increase in land use due to biomass combustion. Concerning the case study, the paper suggests extending the set of considered options, e.g., towards including imported wind energy. More generally, the findings underline the need for a comprehensive environmental assessment of renewable energy systems that integrate electricity supply with heating, cooling, and mobility. On a methodical level, the ESM turns out to be a transparent and well adaptable method to analyze environmental trade-offs from renewable energy supply. It currently suffers from missing quantitative targets that are democratically sufficiently legitimized. At the same time, it can provide a sound basis for an informed discussion on such targets.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6223
Author(s):  
Bin Ye ◽  
Minhua Zhou ◽  
Dan Yan ◽  
Yin Li

The application of renewable energy has become increasingly widespread worldwide because of its advantages of resource abundance and environmental friendliness. However, the deployment of hybrid renewable energy systems (HRESs) varies greatly from city to city due to large differences in economic endurance, social acceptance and renewable energy endowment. Urban policymakers thus face great challenges in promoting local clean renewable energy utilization. To address these issues, this paper proposes a combined multi-objective optimization method, and the specific process of this method is described as follows. The Hybrid Optimization Model for electric energy was first used to examine five different scenarios of renewable energy systems. Then, the Technique for Order Preference by Similarity to an Ideal Solution was applied using eleven comprehensive indicators to determine the best option for the target area using three different weights. To verify the feasibility of this method, Xiongan New District (XND) was selected as an example to illustrate the process of selecting the optimal HRES. The empirical results of simulation tools and multi-objective decision-making show that the Photovoltaic-Diesel-Battery off-grid energy system (option III) and PV-Diesel-Hydrogen-Battery off-grid energy system (option V) are two highly feasible schemes for an HRES in XND. The cost of energy for these two options is 0.203 and 0.209 $/kWh, respectively, and the carbon dioxide emissions are 14,473 t/yr and 345 t/yr, respectively. Our results provide a reference for policymakers in deploying an HRES in the XND area.


2019 ◽  
Vol 102 (2) ◽  
pp. 127-140 ◽  
Author(s):  
Yuliana de Jesus Acosta-Silva ◽  
Irineo Torres-Pacheco ◽  
Yasuhiro Matsumoto ◽  
Manuel Toledano-Ayala ◽  
Genaro Martín Soto-Zarazúa ◽  
...  

The growing demand for food and the unstable price of fossil fuels has led to the search for environmentally friendly sources of energy. Energy is one of the largest overhead costs in the production of greenhouse crops for favorable climate control. The use of wind–solar renewable energy system for the control of greenhouse environments reduces fuel consumption and so enhances the sustainability of greenhouse production. This review describes the impact of solar–wind renewable energy systems in agricultural greenhouses.


2020 ◽  
Author(s):  
Till Kolster ◽  
Rainer Krebs ◽  
Stefan Niessen ◽  
Mathias Duckheim

<div>Corrective transmission system operation can help integrate more renewable energy sources and save redispatch costs by providing a higher utilization of the power grid.</div><div>However, reliable and fast provision of flexibility are key to achieve corrective operation. <br></div><div>This work develops a new method to determine if flexibility from distribution grids is available on transmission corridors when needed. An analysis of the German energy system in the year 2030 is performed to estimate the potential of different flexibility options and shows the potential flexibility distribution systems can contribute to a corrective transmission system operation.<br> </div>


Author(s):  
Salam Waley Shneen ◽  
Dina Harith Shaker ◽  
Fatin Nabeel Abdullah

The change in loads in most applications whose source of nutrition is a renewable energy system. Renewable energy systems can change according to climatic conditions. To control and control these changes, the use of conventional control systems such as PIDs. The PID is one of the most common and used conventional control systems that have been chosen to output the type of power electronic devise (DC-DC converter) in different working conditions. The current study aims to improve the system performance through simulation. Simulation results demonstrate the effectiveness of the system with the controller based on setting parameters such as recording system states, embedded elevation time and transient response.


2021 ◽  
Vol 1 (3) ◽  
pp. 1-12
Author(s):  
Sofia Lewis Lopes ◽  
Elizabeth Duarte ◽  
Rita Fragoso

The exponential population growth will put great pressure on natural resources, agriculture, energy systems and waste production. New business models and innovative technological approaches are necessary to tackle these challenges and achieve the energy transition targets set by the European Commission. Renewable energy technologies and processes such as solar photovoltaic, solar thermal and anaerobic co-digestion have become a subject of interest and research as a solution that could be fully implemented in industries and solve several environmental and economic problems. This paper discusses the possibility of integrating and complement these technologies to maximize renewable energy production and circularity. The review was performed with a funnel approach aiming to analyze broad to specific subjects. Beginning with a literature review on the various definitions of circular economy, bioeconomy, and circular bioeconomy, ultimately proposing a single definition according to an industrial and academic scope combination, followed by a systematization and assessment of data and literature regarding energy systems present state and projections. The next phase was to assess data and literature of the fruit and vegetable processing industry from an energy consumption and biowaste production perspective to consequently discussing technologies that could help manage problems identified throughout this review. This paper culminates in propounding an Integrated Renewable Energy System conceptual model that promotes energy and waste circularity, envisioning how industries could be designed or redesigned in the future, coupled with a circular bioeconomy business model.


2020 ◽  
Vol 10 (6) ◽  
pp. 2068
Author(s):  
Rodolfo Dufo-López ◽  
José L. Bernal-Agustín

Standalone (off-grid) renewable energy systems supply electricity in places where there is no access to a standard electrical grid [...]


Sign in / Sign up

Export Citation Format

Share Document