scholarly journals Research on the Method of Methane Emission Prediction Using Improved Grey Radial Basis Function Neural Network Model

Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6112
Author(s):  
Yongkang Yang ◽  
Qiaoyi Du ◽  
Chenlong Wang ◽  
Yu Bai

Effectively avoiding methane accidents is vital to the security of manufacturing minerals. Coal mine methane accidents are often caused by a methane concentration overrun, and accurately predicting methane emission quantity in a coal mine is key to solving this problem. To maintain the concentration of methane in a secure range, grey theory and neural network model are increasingly used to critically forecasting methane emission quantity in coal mines. A limitation of the grey neural network model is that researchers have merely combined the conventional neural network and grey theory. To enhance the accuracy of prediction, a modified grey GM (1,1) and radial basis function (RBF) neural network model is proposed, which combines the amended grey GM (1,1) model and RBF neural network model. In this article, the proposed model is put into a simulation experiment, which is built based on Matlab software (MathWorks.Inc, Natick, Masezius, U.S). Ultimately, the conclusion of the simulation experiment verified that the modified grey GM (1,1) and RBF neural network model not only boosts the precision of prediction, but also restricts relative error in a minimum range. This shows that the modified grey GM (1,1) and RBF neural network model can make more effective and precise predict the predicts, compared to the grey GM (1,1) model and RBF neural network model.

Author(s):  
Yongkang Yang ◽  
Qiaoyi Du ◽  
Chenlong Wang ◽  
Yu Bai

Effectively avoiding gas accident is vital to the security of mineral manufacture, and the coal mine gas accident is often caused by gas concentration overrun. The prediction accuracy of gas emission quantity in coal mine is the key to solve this problem. To maintain concentration of gas in a secure range,grey theory and neural network model increasingly diffusely used in forecasting gas emission quantity in coal mine critically. Nevertheless, the limitation of the grey neural network model is that researchers merely bonded the conventional neural network and grey theory. To enhance accuracy of prediction, a modified grey GM(1,1) and RBF neural network model is proposed combined amended grey GM(1,1) model and RBF neural network model. Then the proposed model was put into simulation experiment which is built based on Matlab software. Ultimately, conclusion of the simulation experiment verified that the modified grey GM(1,1) and RBF neural network model not only boosts the precision of prediction, but also restricts relative error in a minimum range. This showed that the modified grey GM(1,1) and RBF neural network model achieves effectiveness in precision of prediction much better than grey GM(1,1) model and RBF neural network model.


2012 ◽  
Vol 599 ◽  
pp. 272-277 ◽  
Author(s):  
Zhi Bin Liu ◽  
Xiao Wei Yang

This paper used RBF artificial neural network to evaluate the underground water contaminated by the leachate of waste dump of open pit coal mine of Xinqiu in Fuxin. Firstly, with the advantages of neural network method in dealing with nonlinear problem, the RBF neural network model was built. Then, the normalized standard matrix was taken as training sample and the MATLAB software was used to train the training sample. Finally, the monitoring data were taken as test samples and were inputted in the RBF neural network model to evaluate the groundwater quality of study area. At the same time, the concept of degree of membership was adopted in the result making it more objective and accurate. The result shows that the ground water of this mining is seriously polluted, class of its pollution is Ⅳ-Ⅴ.The method with strong classification function and reliable evaluation results is simple and effective, and can be widely applied in all kinds of water resources comprehensive evaluation.


Sign in / Sign up

Export Citation Format

Share Document