scholarly journals Understanding Membrane Fouling in Electrically Driven Energy Conversion Devices

Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 212
Author(s):  
Soo-Jin Han ◽  
Jin-Soo Park

Positively charged (cetylpyridinium chloride), negatively charged (sodium dodecyl sulfate), and non-charged (polyethylene glycol) surfactants are used as potential foulant in reverse electrodialysis systems supplying seawater and river freshwater. Fouling tendency of the foulants to ion-exchange membranes is investigated in terms of the adsorption by electromigration, electrostatic attraction, and macromolecule interaction in reverse electrodialysis systems. According to theoretical prediction of fouling tendency, charged foulants in seawater streams could foul ion-exchange membranes significantly. However, the worst fouling behavior is observed when the charged foulants are present in river streams. As a result of zeta potential measurement, it is found that the Debye length of the charged foulants decreases due to the higher ionic strength of seawater streams and causes to lower net electrostatic effect. It finally results in less fouling tendency in reverse electrodialysis.

Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 135
Author(s):  
Yash Dharmendra Raka ◽  
Robert Bock ◽  
Håvard Karoliussen ◽  
Øivind Wilhelmsen ◽  
Odne Stokke Burheim

The ohmic resistances of the anion and cation ion-exchange membranes (IEMs) that constitute a reverse electrodialysis system (RED) are of crucial importance for its performance. In this work, we study the influence of concentration (0.1 M, 0.5 M, 1 M and 2 M) of ammonium bicarbonate solutions on the ohmic resistances of ten commercial IEMs. We also studied the ohmic resistance at elevated temperature 313 K. Measurements have been performed with a direct two-electrode electrochemical impedance spectroscopy (EIS) method. As the ohmic resistance of the IEMs depends linearly on the membrane thickness, we measured the impedance for three different layered thicknesses, and the results were normalised. To gauge the role of the membrane resistances in the use of RED for production of hydrogen by use of waste heat, we used a thermodynamic and an economic model to study the impact of the ohmic resistance of the IEMs on hydrogen production rate, waste heat required, thermochemical conversion efficiency and the levelised cost of hydrogen. The highest performance was achieved with a stack made of FAS30 and CSO Type IEMs, producing hydrogen at 8.48× 10−7 kg mmem−2s−1 with a waste heat requirement of 344 kWh kg−1 hydrogen. This yielded an operating efficiency of 9.7% and a levelised cost of 7.80 € kgH2−1.


2017 ◽  
Vol 523 ◽  
pp. 402-408 ◽  
Author(s):  
A. Zlotorowicz ◽  
R.V. Strand ◽  
O.S. Burheim ◽  
Ø. Wilhelmsen ◽  
S. Kjelstrup

2012 ◽  
Vol 44 ◽  
pp. 1328-1330
Author(s):  
E. Guler ◽  
K. Nijmeijer ◽  
M. Saakes

RSC Advances ◽  
2017 ◽  
Vol 7 (58) ◽  
pp. 36555-36561 ◽  
Author(s):  
Mei Chen ◽  
Jinxing Ma ◽  
Zhiwei Wang ◽  
Xingran Zhang ◽  
Zhichao Wu

Understanding the mechanisms of multivalent iron interacting with ion-exchange membranes (IEMs) is crucial for the prediction of membrane fouling as well as the development of control strategies.


Membranes ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 145 ◽  
Author(s):  
Liliana Villafaña-López ◽  
Daniel M. Reyes-Valadez ◽  
Oscar A. González-Vargas ◽  
Victor A. Suárez-Toriello ◽  
Jesús S. Jaime-Ferrer

Salinity gradient power is a renewable, non-intermittent, and neutral carbon energy source. Reverse electrodialysis is one of the most efficient and mature techniques that can harvest this energy from natural estuaries produced by the mixture of seawater and river water. For this, the development of cheap and suitable ion-exchange membranes is crucial for a harvest profitability energy from salinity gradients. In this work, both anion-exchange membrane and cation-exchange membrane based on poly(epichlorohydrin) and polyvinyl chloride, respectively, were synthesized at a laboratory scale (255 c m 2) by way of a solvent evaporation technique. Anion-exchange membrane was surface modified with poly(ethylenimine) and glutaraldehyde, while cellulose acetate was used for the cation exchange membrane structural modification. Modified cation-exchange membrane showed an increase in surface hydrophilicity, ion transportation and permselectivity. Structural modification on the cation-exchange membrane was evidenced by scanning electron microscopy. For the modified anion exchange membrane, a decrease in swelling degree and an increase in both the ion exchange capacity and the fixed charge density suggests an improved performance over the unmodified membrane. Finally, the results obtained in both modified membranes suggest that an enhanced performance in blue energy generation can be expected from these membranes using the reverse electrodialysis technique.


Sign in / Sign up

Export Citation Format

Share Document