scholarly journals Deep Geothermal Heating Potential for the Communities of the Western Canadian Sedimentary Basin

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 706
Author(s):  
Jacek Majorowicz ◽  
Stephen E. Grasby

We summarize the feasibility of using geothermal energy from the Western Canada Sedimentary Basin (WCSB) to support communities with populations >3000 people, including those in northeastern British Columbia, southwestern part of Northwest Territories (NWT), southern Saskatchewan, and southeastern Manitoba, along with previously studied communities in Alberta. The geothermal energy potential of the WCSB is largely determined by the basin’s geometry; the sediments start at 0 m thickness adjacent to the Canadian shield in the east and thicken to >6 km to the west, and over 3 km in the Williston sub-basin to the south. Direct heat use is most promising in the western and southern parts of the WCSB where sediment thickness exceeds 2–3 km. Geothermal potential is also dependent on the local geothermal gradient. Aquifers suitable for heating systems occur in western-northwestern Alberta, northeastern British Columbia, and southwestern Saskatchewan. Electrical power production is limited to the deepest parts of the WCSB, where aquifers >120 °C and fluid production rates >80 kg/s occur (southwestern Northwest Territories, northwestern Alberta, northeastern British Columbia, and southeastern Saskatchewan. For the western regions with the thickest sediments, the foreland basin east of the Rocky Mountains, estimates indicate that geothermal power up to 2 MWel. (electrical), and up to 10 times higher for heating in MWth. (thermal), are possible.

2021 ◽  
Vol 23 (1) ◽  
pp. 195-211
Author(s):  
I.M. Okiyi ◽  
S.I. Ibeneme ◽  
E.Y. Obiora ◽  
S.O. Onyekuru ◽  
A.I. Selemo ◽  
...  

Residual aeromagnetic data of parts of Southeastern Nigerian sedimentary basin were reduced to the equator and subjected to magnetic vector inversion and spectral analysis. Average depths of source ensembles from spectral analysis were used to compute depth to magnetic tops (Z), base of the magnetic layer (Curie Point t Depth (CPD)), and estimate geothermal gradient and heat flow required for the evaluation of the geothermal resources of the study area. Results from spectral analysis showed depths to the top of the magnetic source ranging between 0.45 km and 1.90 km; centroid depths of 4 km - 7.87 km and CPD of between 6.15 km and 14.19 km. The CPD were used to estimate geothermal gradients which ranged from 20.3°C/km to 50.0°C/km 2 2 and corresponding heat flow values of 34.9 mW/m to 105 mW/m , utilizing an average thermal conductivity -1 -1 of 2.15 Wm k . Ezzagu (Ogboji), Amanator-Isu, Azuinyaba, Nkalagu, Amagunze, Nta-Nselle, Nnam, Akorfornor environs are situated within regions of high geothermal gradients (>38°C/Km) with models delineated beneath these regions using 3D Magnetic Vector Inversion, having dominant NW-SE and NE-SW trends at shallow and greater depths of <1km to >7 km bsl. Based on VES and 2D imaging models the geothermal system in Alok can be classified as Hot Dry Rock (HDR) type, which may likely have emanated from fracture systems. There is prospect for the development of geothermal energy in the study area. Keywords: Airborne Magnetics, Magnetic Vector Inversion, Geothermal Gradient, Heat Flow, Curie Point Depth, Geothermal Energy.


2017 ◽  
Vol 188 (5) ◽  
pp. 30 ◽  
Author(s):  
Vincent Crombez ◽  
Sébastien Rohais ◽  
François Baudin ◽  
Benoit Chauveau ◽  
Tristan Euzen ◽  
...  

The recent development of unconventional resources has triggered a regain of interest for source-rocks. The presence of hydrocarbons in these unconventional systems is generally associated with organic-rich sediments. This study aims at better understanding the factors controlling the accumulation of marine organic matter at basin scale, using a process-based approach. This work focuses on the Montney, Doig and Halfway Formations (Lower and Middle Triassic, Alberta and British Columbia, Canada). Recent studies show that the Triassic strata of the Western Canada sedimentary basin can be considered as a transitional period between the Paleozoic passive margin and the Jurassic foreland basin. Based on a 3D regional stratigraphic architecture and on a description of the organic rich interval distribution, a process-based numerical model (DionisosFlow and DORS) has been used to simulate the stratigraphic evolution of the Montney, Doig and Halfway Formations and reproduce the organic distribution in these formations. This modeling approach allowed us to test different scenarios of primary productivity and basin restriction and discuss the regional controls on organic matter accumulation such as dynamic of anoxia or dilution of organic matter by detrital sediments. The reconstruction of the stratigraphic architecture emphasizes a major drop of the water discharge in the basin. In the absence of any evidence supporting a link with a climate change, the drop in water discharge suggests a major modification of the drainage area of the basin, potentially associated with the early stage of the cordilleran orogeny and foreland basin evolution. The numerical simulation also shows that the primary productivity rates in the Montney and Doig Formations are characteristic of a coastal area and that a basin restriction is required to account for the level of anoxia observed in the studied Formations. Lastly, this study investigates the regional controls on organic matter accumulation and emphasizes the impact of regional paleogeographic and geodynamic evolution on the dynamic of anoxia and on the dilution.


2021 ◽  
Author(s):  
A. Kozhagulova ◽  
R. Iltukov ◽  
A. Tileugabylov ◽  
A. Yegeubayeva ◽  
E. Bayramov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document