scholarly journals On the Sizing of the DC-Link Capacitor to Increase the Power Transfer in a Series-Series Inductive Resonant Wireless Charging Station

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 743
Author(s):  
Andrea Carloni ◽  
Federico Baronti ◽  
Roberto Di Rienzo ◽  
Roberto Roncella ◽  
Roberto Saletti

Wireless inductive-coupled power transfer is a very appealing technique for the battery recharge of autonomous devices like surveillance drones. The charger design mainly focuses on lightness and fast-charging to improve the drone mission times and reduce the no-flight gaps. The charger secondary circuit mounted on the drone generally consists of a full-bridge rectifier and a second-order filter. The filter cut-off frequency is usually chosen to make the rectifier output voltage constant and so that the battery is charged with continuous quantities. Previous works showed that an increase in power transfer is achieved, if compared to the traditional case, when the second-order filter resonant frequency is close to the double of the wireless charger excitation and the filter works in resonance. This work demonstrates that the condition of resonance is necessary but not sufficient to achieve the power increment. The bridge rectifier diodes must work in discontinuous-mode to improve the power transfer. The paper also investigates the dependence of the power transfer increase on the wireless excitation frequency. It is found the minimum frequency value below which the power transfer gain is not possible. This frequency transition point is calculated, and it is shown that the gain in power transfer is obtained for any battery when its equivalent circuit parameters are known. LTSpice simulations demonstrate that the transferred power can be incremented of around 30%, if compared to the case in which the rectifier works in continuous mode. This achievement is obtained by following the design recommendations proposed at the end of the paper, which trade off the gain in power transfer and the amplitude of the oscillating components of the wireless charger output.

Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2621 ◽  
Author(s):  
Andrea Carloni ◽  
Federico Baronti ◽  
Roberto Di Rienzo ◽  
Roberto Roncella ◽  
Roberto Saletti

Wireless inductive-coupled power transfer and opportunity battery charging are very appealing techniques in drone applications. Weight and size are very critical constraints in drones, so the battery and the on-board electronics must be as light and small as possible. The on-board components involved in the resonant inductive-coupled wireless power transfer usually consist of the secondary coil, the compensation capacitor, the bridge rectifier, the LC-filter and the battery. This paper suggests a sizing of the LC-filter capacitor that improves the charging power of the battery. In addition, further on-board space and size is saved by using the stray inductance of the battery as filtering inductor. LTSpice simulations and experimental tests carried out on the prototype of a wireless power transfer circuit shows the dependency of the power delivered to the battery on the filter capacitor size. Finally, it is found that the power transfer to the battery is maximized by choosing the capacitor value that sets the LC-filter resonant frequency close to the double of the excitation frequency of the wireless charging. The drawback is a large current and voltage ripple in the battery.


Author(s):  
YongAn LI

Background: The symbolic nodal analysis acts as a pivotal part of the very large scale integration (VLSI) design. Methods: In this work, based on the terminal relations for the pathological elements and the voltage differencing inverting buffered amplifier (VDIBA), twelve alternative pathological models for the VDIBA are presented. Moreover, the proposed models are applied to the VDIBA-based second-order filter and oscillator so as to simplify the circuit analysis. Results: The result shows that the behavioral models for the VDIBA are systematic, effective and powerful in the symbolic nodal circuit analysis.</P>


Author(s):  
Zhuang Jiao ◽  
YangQuan Chen

AbstractThe impulse response of a generalized fractional second order filter of the form (s 2α + as α + b)−γ is derived, where 0 < α ≤ 1, 0 < γ < 2. The asymptotic properties of the impulse responses are obtained for two cases, and within these two cases, the properties are shown when changing the value of γ. It is shown that only when (s 2α + as α + b)−1 has the critical stability property, the generalized fractional second order filter (s 2α + as α + b)−γ has different properties as we change the value of γ. Finally, numerical examples to illustrate the impulse response are provided to verify the obtained results.


2019 ◽  
Vol 9 (22) ◽  
pp. 4767 ◽  
Author(s):  
Nikolay Madzharov ◽  
Nikolay Hinov

The scientific and applied problems discussed in this paper are related to the development of a wireless charging station using an inductive power transfer (IPT) module power supply with energy dosing and dynamic matching. A computer simulation and an experimental study allowed the authors to define the ranges of the parameter variation of the equivalent load and to design the best matching so that maximum energy transfer is efficiency achieved. The proposed principle of energy control provides highly reliable and a flexible charging station even with a simplified system of automatic control and fault protection. A prototype charging station is developed and built to supply an inductive power transfer system that delivers 30–35 kW power over an air gap between transmitting and receiving parts measuring 50–200 mm and with a horizontal misalignment of ±200 mm. The results showed that the system can transfer the specified electrical power with about 82–92% efficiency and that the IPT module and its dynamic matching during charging exhibited a high degree of stability under a misaligned (x-y-z) condition and battery state of charge.


Sign in / Sign up

Export Citation Format

Share Document