Voltage-mode Second-order Filter and Quadrature Oscillator Based-on Differential Difference Current Conveyors and Only Grounded Elements

2020 ◽  
Vol 1 (9) ◽  
pp. 64-69
Author(s):  
Prawech JANCHAI
2016 ◽  
Vol 25 (12) ◽  
pp. 1650154 ◽  
Author(s):  
Ahmet Abaci ◽  
Erkan Yuce

In this paper, two new second-order voltage-mode universal filters are proposed. Both of the proposed filters use only two differential voltage current conveyors (DVCCs), four resistors and two grounded capacitors which are advantageous from integrated circuit technology point of view. They can simultaneously provide second-order low-pass, high-pass, band-pass, notch and all-pass responses. They offer orthogonal control of angular resonance frequency and quality factor. However, they have a single matching condition for only all-pass responses. A number of simulations based on SPICE program are accomplished in order to demonstrate the performance of both filters.


2013 ◽  
Vol 22 (01) ◽  
pp. 1250065 ◽  
Author(s):  
SUDHANSHU MAHESHWARI ◽  
JITENDRA MOHAN ◽  
DURG SINGH CHAUHAN

This paper presents two new first-order voltage-mode (VM) cascadable all-pass (AP) sections, employing two differential voltage current conveyors (DVCCs) and three grounded passive components. Both circuits possess high input and low output impedance, which makes them easily cascadable. Non-ideality aspects and parasitic effects are also studied. As an application, a quadrature oscillator is designed using the proposed circuit. The proposed circuits are verified through PSPICE simulations using 0.5 μm CMOS parameters.


2009 ◽  
Vol 2009 ◽  
pp. 1-4 ◽  
Author(s):  
Montree Kumngern ◽  
Kobchai Dejhan

A new voltage-mode quadrature oscillator using two differential difference current conveyors (DDCCs), two grounded capacitors, and three grounded resistors is presented. The proposed oscillator provides the following advantages: the oscillation condition and oscillation frequency are orthogonally controlled; the oscillation frequency is controlled through a single grounded resistor; the use of only grounded capacitors and resistors makes the proposed circuit ideal for IC implementation; low passive and active sensitivities. Simulation results verifying the theoretical analysis are also included.


1998 ◽  
Vol 21 (3) ◽  
pp. 221-230 ◽  
Author(s):  
Muhammad Taher Abuelma'atti

Novel current-mode active filter circuits using current-conveyors are presented. The proposed circuits can realize all standard second-order filter functions. The circuits enjoy high output impedances and can, therefore, be easily cascaded to produce higher order filters. Moreover, the realized filter function can be easily programmed using at most a 13-bit digital number without changing the circuit topology.


1997 ◽  
Vol 20 (2) ◽  
pp. 111-117 ◽  
Author(s):  
Muhammad Taher Abuelma'atti ◽  
Husain Abdullah Al-Zaher

A new universal voltage-mode second-order filter circuit is presented. The circuit has three inputs and one low-impedance output and can realize all the standard filter functions; lowpass, highpass, bandpass, notch, and allpass, without changing the passive elements. The proposed circuit uses only five passive components and enjoys independent control of the natural frequency and the bandwidth, orthogonal control of the natural frequency and the quality factor, as well as low active and passive sensitivities.


2016 ◽  
Vol 6 (2) ◽  
pp. 22
Author(s):  
ANURAG RASHIKA ◽  
PANDEY NEETA ◽  
CHANDRA ROHAN ◽  
PANDEY RAJESHWARI ◽  
◽  
...  

Author(s):  
YongAn LI

Background: The symbolic nodal analysis acts as a pivotal part of the very large scale integration (VLSI) design. Methods: In this work, based on the terminal relations for the pathological elements and the voltage differencing inverting buffered amplifier (VDIBA), twelve alternative pathological models for the VDIBA are presented. Moreover, the proposed models are applied to the VDIBA-based second-order filter and oscillator so as to simplify the circuit analysis. Results: The result shows that the behavioral models for the VDIBA are systematic, effective and powerful in the symbolic nodal circuit analysis.</P>


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Sudhanshu Maheshwari ◽  
Bhartendu Chaturvedi

This paper presents some additional high input low output impedance analog networks realized using a recently introduced single Dual-X Current Conveyor with buffered output. The new circuits encompass several all-pass sections of first- and second-order. The voltage-mode proposals benefit from high input impedance and low output impedance. Nonideality and sensitivity analysis is also performed. The circuit performances are depicted through PSPICE simulations, which show good agreement with theory.


Sign in / Sign up

Export Citation Format

Share Document