scholarly journals Modeling Water Droplet Freezing and Collision with a Solid Surface

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1020
Author(s):  
Doston Shayunusov ◽  
Dmitry Eskin ◽  
Boris V. Balakin ◽  
Svyatoslav Chugunov ◽  
Stein Tore Johansen ◽  
...  

Water droplets released from the sea surface represent one of the major causes of ice accretion on marine vessels. A one-dimensional model of the freezing of a spherical water droplet moving in cold air was developed. The crystallization model allows one to obtain an analytical solution if a uniform temperature distribution over the liquid’s core is assumed. The model was validated using STAR CCM+ Computational fluid dynamics (CFD) code. A collision of a partially frozen droplet with a solid wall assuming the plastic deformation of an ice crust was also considered. The ratio of the crust deformation to the crust thickness was evaluated. It was assumed that if this ratio were to exceed unity, the droplet would stick to the wall’s surface due to ice bridge formation caused by the water released from the droplet’s core.

Author(s):  
I. V. Roisman ◽  
C. Tropea

This is a theoretical study about ice particle impact onto a rigid wall. It is motivated by the need to model the process of ice crystal accretion or damage caused by an ice particle impacts. A quasi-one-dimensional model of ice particle impact and deformation is developed. Spherical, cylindrical and conical shapes of the ice crystals are analysed. The model is able to predict particle residual height, the force produced by impact and the collision duration. The theoretical predictions agree well with the available experimental data.


2021 ◽  
Vol 11 (7) ◽  
pp. 3245
Author(s):  
Eldwin Djajadiwinata ◽  
Shereef Sadek ◽  
Shaker Alaqel ◽  
Jamel Orfi ◽  
Hany Al-Ansary

This paper studies the pressure variation that exists on the converging mixing section wall of a supersonic ejector for refrigeration application. The objective is to show that the ejector one-dimensional model can be improved by considering this wall’s pressure variation which is typically assumed constant. Computational Fluid Dynamics (CFD) simulations were used to obtain the pressure variation on the aforementioned wall. Four different ejectors were simulated. An ejector was obtained from a published experimental work and used to validate the CFD simulations. The other three ejectors were a modification of the first ejector and used for the parametric study. The secondary mass flow rate,


1983 ◽  
Vol 4 ◽  
pp. 297-297
Author(s):  
G. Brugnot

We consider the paper by Brugnot and Pochat (1981), which describes a one-dimensional model applied to a snow avalanche. The main advance made here is the introduction of the second dimension in the runout zone. Indeed, in the channelled course, we still use the one-dimensional model, but, when the avalanche spreads before stopping, we apply a (x, y) grid on the ground and six equations have to be solved: (1) for the avalanche body, one equation for continuity and two equations for momentum conservation, and (2) at the front, one equation for continuity and two equations for momentum conservation. We suppose the front to be a mobile jump, with longitudinal velocity varying more rapidly than transverse velocity.We solve these equations by a finite difference method. This involves many topological problems, due to the actual position of the front, which is defined by its intersection with the reference grid (SI, YJ). In the near future our two directions of research will be testing the code on actual avalanches and improving it by trying to make it cheaper without impairing its accuracy.


1992 ◽  
Vol 25 (10) ◽  
pp. 2889-2896 ◽  
Author(s):  
R D Gianotti ◽  
M J Grimson ◽  
M Silbert

Sign in / Sign up

Export Citation Format

Share Document