scholarly journals Fatigue Analysis Design Approach, Manufacturing and Implementation of a 500 kW Wind Turbine Main Load Frame

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3581
Author(s):  
Ahmet Selim Pehlivan ◽  
Mahmut Faruk Aksit ◽  
Kemalettin Erbatur

The main load frame of a wind turbine is the primary mount for all nacelle equipment and is used as the principal load transmitter. This frame should have a reliable fatigue safety rating because it is a load-bearing component. In this work, the fatigue life design, manufacturing and implementation process for the main load frame of a 500 kW wind turbine are studied. The weight of the main load frame and static safety factors are preserved while the cyclic life of the bedplate is kept infinite. Modified Goodman theory is applied to achieve an effective fatigue design using a commercial finite element software package. Analytical calculations are carried out to obtain the safety factors of the bedplate and dynamic strength of the materials. A finite element approach is employed to perform stress analysis. Stress oscillations are established for both welded and cast parts of the hybrid bedplate, and the maximum and minimum stress values are established. Fatigue safety factors are calculated via fatigue analysis iterations. The obtained safety factors are adequate from the perspective of commonly accepted fatigue safety standards. Welding and casting techniques are applied together for manufacturing of the frame. On-site testing indicates that the wind turbine does not show any signs of fatigue. Rupture, cracks, and abrupt accelerometer reading variations are not observed.

2019 ◽  
Vol 44 (1) ◽  
pp. 49-59
Author(s):  
Nilesh Chandgude ◽  
Nitin Gadhave ◽  
Ganesh Taware ◽  
Nitin Patil

In this article, three small wind turbine blades of different materials were manufactured. Finite element analysis was carried out using finite element software ANSYS 14.5 on modeled blades of National Advisory Committee for Aeronautics 4412 airfoil profile. From finite element analysis, first, two flap-wise natural frequencies and mode shapes of three different blades are obtained. Experimental vibration analysis of manufactured blades was carried out using fast Fourier transform analyzer to find the first two flap-wise natural frequencies. Finally, the results obtained from the finite element analysis and experimental test of three blades are compared. Based on vibration analysis, we found that the natural frequency of glass fiber reinforced plastic blade reinforced with aluminum sheet metal (small) strips increases compared with the remaining blades. An increase in the natural frequency indicates an increase in the stiffness of blade.


Author(s):  
Xutian Xue ◽  
Xiaoyong Liu ◽  
Nian-Zhong Chen ◽  
Xifeng Gao

Abstract This paper aims to perform a time-domain mooring fatigue analysis for a Spar-type floating offshore wind turbine operated in the South China Sea. Tension ranges of mooring lines are achieved from a hydrodynamic analysis where the effects of wind, wave and current are considered. A rainflow counting method is used to calculate the number of mooring tension cycles with corresponding ranges. The fatigue lives of mooring lines are then predicted by Palmgren-Miner’s rule according to T-N & S-N curves. A comparison of fatigue lives predicted by T-N & S-N curves-based approaches with/without considering safety factors is made. The results show that the T-N curves-based approach is more conservative than the S-N curves-based approach if safety factors are not considered in the two approaches, while the fatigue lives predicted by both approaches are in general comparable when the safety factors suggested by API and DNVGL are applied in the two approaches. A comparative study of three kinds of R4 grade studless mooring chains with different diameters (2.5-inch, 4-inch, 5-inch) is also conducted and the results show that the design with the 2.5-inch chain does not meet the fatigue requirements.


2012 ◽  
Vol 622-623 ◽  
pp. 1140-1142
Author(s):  
Li Mei Wu ◽  
Yong Zhao Li ◽  
Yan Rong Wang ◽  
Fei Yang

Taking taper-lock Connection in Wind Turbine Spindle as research object, the paper analyzes the relativity of structural sizes and builds the parametric structural model by means of a way APDL. By using the non-liner finite element software ANSYS, the stress of taper-lock on the limit load conditions is analyzed, then contact stress and strain of the planet carrier and spindle are discussed. This is useful to the choice of assembly condition during taper-lock, planet carrier and spindle and providing theoretical data.


2013 ◽  
Vol 446-447 ◽  
pp. 733-737
Author(s):  
Chi Chen ◽  
Hao Yuan Chen ◽  
Tian Lu

In this paper, a 1.5 MW wind turbine tower in Dali, Yunnan Province is used as the research object, using large-scale finite element software Ansys to carry on the dynamic analysis. These natural frequencies and natural vibration type of the first five of tower are obtained by modal analysis and are compared with natural frequency to determine whether the resonance occurs. Based on the modal analysis, the results of the transient dynamic analysis are obtained from the tower, which is loaded by the static wind load and fluctuating wind load in two different forms. By comparing the different results, it provides the basis for the dynamic design of wind turbine tower.


2011 ◽  
Vol 120 ◽  
pp. 81-84
Author(s):  
Jian Hua Wang ◽  
Jian Hua ◽  
Chao Li

Fatigue rupture is the major reason of crankshaft parts failure. Traditional fatigue analysis is fairly complicated and causes a great error. The finite element model of s195 engine crankshaft is created under SolidWorks environment, whose static analysis and fatigue analysis is carried out by using Simulation module. Also the vibration character of the crankshaft is calculated through modal analysis. Result shows the fatigue strength of the crankshaft is enough and it will not produce resonance in operation.


2013 ◽  
Vol 712-715 ◽  
pp. 1494-1500
Author(s):  
Bi Feng Cao ◽  
Hui Yu

The paper uses the finite element software ANSYS to establish a 1.5 MW horizontal-axis wind turbine tower model as an example and works on the modal analysis. The modal analysis takes into account the totalmass of wind rotor and nacelle and assumes the bottom of the wind turbine tower is fully constrained. The result shows that the natural frequency of the 1.5MW wind turbine tower is not coincident with the excitation frequency of the wind turbine, and the wind turbine can operate stably at the design condition.


2011 ◽  
Vol 337 ◽  
pp. 372-378
Author(s):  
Wen Xue Fan ◽  
Fu Rong Chen

Based on the fatigue behaviors of welded structure and the distinction between static fatigue and vibration fatigue and sound fatigue, the general fatigue analysis methods of static fatigue and vibration fatigue are introduced in this paper, such as nominal stress method, structure stress method, hot stress method and power spectral density method. Especially application status and common software of finite element analysis are expounded and analyzed in fatigue analysis of the welded joint. In recent years, finite element technology is applied widely on analysis all kinds of welded joints, the main problems include two points, built suitable model and generated reasonable mesh. Nowadays, finite element software has many kinds of usage and different software has different functions. According to the stress analysis process of static fatigue and vibration fatigue, three large-scale general finite element software ANSYS, MSC.NASTRAN/PANTRAN and ABAQUS, some comparative analyses have been done in building model, partitioning mesh and applying method At last some important conclusions are given. Different finite element software has equivalent development background and reliable analysis performance. Different finite element software have different application platform. In order to get better analysis result, each other’s merits are drew from different software and matched with the application.


Author(s):  
Nelson Octavio Ruiz-Nucamendi ◽  
Jose Billerman Robles-Ocampo ◽  
Perla Yasmin Sevilla-Camacho ◽  
Luis Alberto Morales-Alias

This article presents the design, simulation and fatigue analysis of various aerodynamic profiles used in low power wind turbines. For this purpose, the model of a blade of a horizontal axis wind turbine with a nominal power of 5 kW is developed. The analysis of the lift, drag and power coefficients of the aerodynamic profiles was carried out with the XFLR5 software. The methodology used for the blade design is based on the interactions and convergence method called BEM. Also, to simulate the structural and aerodynamic part of the element, the QBlade program was used. With the main objective of ensuring that the fatigue safety factors mentioned in the IEC 61400 standard are achieved, the Simplified Load Model was applied. The maximum fatigue value of 21,421.66 N and the maximum flapwise moment value of 698.41 Nm were obtained.


2019 ◽  
Vol 10 (04) ◽  
pp. 1850010
Author(s):  
François Dagry ◽  
Ali Mehmanparast ◽  
Patrick Müller ◽  
Klaus Pantke

The structural integrity of large diameter wind turbine bearings have been investigated using the built-in “contour integral” tool in ABAQUS finite element software package by modeling three-dimensional penny-shaped cracks and evaluating the stress intensity factors. In order to sub-model a crack and investigate the fracture mechanics of the rolling contact between the rollers and the raceway, a python script was developed and implemented in the analysis. Important steps to build the crack model are detailed and recommendations are made for further use of the finite element modeling tool in compressive mixed mode fracture mechanics assessment of wind turbine bearings. Moreover, the influence of initial residual stresses due to induction hardening of the raceway is also investigated and discussed in this paper. For frictionless contacts between the two crack faces, “contour integral” in ABAQUS appears to be a suitable method to obtain accurate stress intensity factor solutions for modes II and III. The results from this study are validated through comparison with the analytical solutions available in the literature and are expected to facilitate numerical life assessment of wind turbine bearings.


Sign in / Sign up

Export Citation Format

Share Document