Parametric Modeling and Simulation of Taper-Lock Connection in Wind Turbine Spindle Based on ANSYS

2012 ◽  
Vol 622-623 ◽  
pp. 1140-1142
Author(s):  
Li Mei Wu ◽  
Yong Zhao Li ◽  
Yan Rong Wang ◽  
Fei Yang

Taking taper-lock Connection in Wind Turbine Spindle as research object, the paper analyzes the relativity of structural sizes and builds the parametric structural model by means of a way APDL. By using the non-liner finite element software ANSYS, the stress of taper-lock on the limit load conditions is analyzed, then contact stress and strain of the planet carrier and spindle are discussed. This is useful to the choice of assembly condition during taper-lock, planet carrier and spindle and providing theoretical data.

Author(s):  
Ainhoa Martinez Ormaetxea ◽  
Andreas Öchsner

The manufacturing process of bone scaffold structures has an important influence on the final mechanical strength of the structure. When the structures are not produced properly, i.e. have imperfections such as missing parts or slightly displaced joints, they lose some of their mechanical properties. The aim of this study was to see how different types of damage affect the structures and also if their effects are equal when the structure is subjected to different load conditions. The change of the mechanical behavior was determined using the commercial finite element software MSC Marc Mentat. In turn, the damage was introduced by manipulating the structure’s files (ASCII data files) using the programming language Fortran. Apart from the numerical simulations, experimental testing was also performed to verify the numerical results. In the frame of this study, useful information for further research is provided.


2019 ◽  
Vol 44 (1) ◽  
pp. 49-59
Author(s):  
Nilesh Chandgude ◽  
Nitin Gadhave ◽  
Ganesh Taware ◽  
Nitin Patil

In this article, three small wind turbine blades of different materials were manufactured. Finite element analysis was carried out using finite element software ANSYS 14.5 on modeled blades of National Advisory Committee for Aeronautics 4412 airfoil profile. From finite element analysis, first, two flap-wise natural frequencies and mode shapes of three different blades are obtained. Experimental vibration analysis of manufactured blades was carried out using fast Fourier transform analyzer to find the first two flap-wise natural frequencies. Finally, the results obtained from the finite element analysis and experimental test of three blades are compared. Based on vibration analysis, we found that the natural frequency of glass fiber reinforced plastic blade reinforced with aluminum sheet metal (small) strips increases compared with the remaining blades. An increase in the natural frequency indicates an increase in the stiffness of blade.


Author(s):  
John Martin

The pilger process is a cold-worked mechanical process that combines the elements of extrusion, rolling, and upsetting for the formation of thin-walled tubes. This complex manufacturing process relies on the results of trial and error testing programs, experimental parameter sensitivity studies, and prototypical applications to advance the technology. This finite element modelling effort describes the methods, models, and assumptions used to assess the process parameters used to manufacture thin-walled tubing. The modelling technique breaks down the manufacturing process into smaller computer generated models representing fundamental process functions. Each of these models is linked with the overall process simulation. Simplified assumptions are identified and supporting justifications provided. This work represents proof of principle modelling techniques, using large deformation, large strain, finite element software. These modelling techniques can be extended to more extensive parameter studies evaluating the effects of pilger process parameter changes on final tube stress and strain states and their relationship to defect formation/propagation. Sensitivity studies on input variables and the process parameters associated with one pass of the pilger process are also included. The modelling techniques have been extended to parameter studies evaluating the effects of pilger process parameter changes on tube stress and strain states and their relationship to defect formation. Eventually a complex qualified 3-D model will provide more accurate results for process evaluation purposes. However, the trends and results reported are judged adequate for examining process trends and parameter variability.


2013 ◽  
Vol 446-447 ◽  
pp. 733-737
Author(s):  
Chi Chen ◽  
Hao Yuan Chen ◽  
Tian Lu

In this paper, a 1.5 MW wind turbine tower in Dali, Yunnan Province is used as the research object, using large-scale finite element software Ansys to carry on the dynamic analysis. These natural frequencies and natural vibration type of the first five of tower are obtained by modal analysis and are compared with natural frequency to determine whether the resonance occurs. Based on the modal analysis, the results of the transient dynamic analysis are obtained from the tower, which is loaded by the static wind load and fluctuating wind load in two different forms. By comparing the different results, it provides the basis for the dynamic design of wind turbine tower.


2015 ◽  
Vol 41 (2) ◽  
pp. e12-e18 ◽  
Author(s):  
Mostafa Omran Hussein ◽  
Mahmoud Elsayed Rabie

The All-on-4 design was used successfully for restoring edentulous mandible. This design avoids anatomic cripples such as inferior alveolar nerve by tilting posterior implants. Moreover, tilting posterior implants of All-on-4 design had a mechanical preference than the conventional design. On the other hand, the anterior implants are parallel at the lateral incisor region. Several researches showed favorable results for tilting posterior implants. However, research did not study the influence of the anterior implant position or orientation on the mechanical aspects of this design. This study analyzes the influence of varying anterior implant position and orientation of the All-on-4 design using nonlinear contact 3D finite-element analysis. Three copied 3-dimensional models of the All-on-4 design were classified according to anterior implant position and orientation. The frictional contact between fixtures and bone was the contact type in this finite element analysis. Finally, von Mises stress and strain at implant and bone levels were recorded and analyzed using finite element software. Stress concentrations were detected mainly around the posterior implant at the loaded side. Values of the maximum equivalent stress and strain were around tilted implants of design III followed by design II, then design I. Changing the position or orientation of the anterior implants in All-on-4 design influences stress-strain distribution of the whole design.


2012 ◽  
Vol 557-559 ◽  
pp. 300-303
Author(s):  
Cheng Hong Duan ◽  
Xiang Peng Luo ◽  
Nan Zhang

In this paper, a finite element model of a composite gas cylinder was established by ABAQUS finite element software, with consideration that both heads were helically wound and their wound angle and wound thickness varied with different parallel circle radius. Stress of the composite gas cylinder and PEEQ of its liner under different working conditions after autofrettage treatment were studied, the stress distribution was assessed by the DOT CFFC standard and the effective range of autofrettage treatment was confirmed. This finite element analysis method may be referable to the design and inspection of composite gas cylinders.


2013 ◽  
Vol 135 (5) ◽  
Author(s):  
S. L. Mahmood ◽  
R. Seshadri

In this paper, the mα-tangent multiplier is used in conjunction with the elastic modulus adjustment procedure (EMAP) for limit load determination. This technique is applied to a number of mechanical components possessing different kinematic redundancies. By specifying spatial variations in the elastic modulus, numerous sets of statically admissible and kinematically admissible stress and strain distributions are generated, and limit loads for practical components are then determined using the mα-tangent method. The procedure ensures sufficiently accurate limit loads within a reasonable number of iterations. Results are compared with the inelastic finite element results and are found to be in satisfactory agreement.


2013 ◽  
Vol 712-715 ◽  
pp. 1494-1500
Author(s):  
Bi Feng Cao ◽  
Hui Yu

The paper uses the finite element software ANSYS to establish a 1.5 MW horizontal-axis wind turbine tower model as an example and works on the modal analysis. The modal analysis takes into account the totalmass of wind rotor and nacelle and assumes the bottom of the wind turbine tower is fully constrained. The result shows that the natural frequency of the 1.5MW wind turbine tower is not coincident with the excitation frequency of the wind turbine, and the wind turbine can operate stably at the design condition.


2013 ◽  
Vol 392 ◽  
pp. 210-213
Author(s):  
Shou Shan Cheng ◽  
Hai Xin Huang ◽  
Ying Zhang ◽  
Pei Chen

For solving the problem of manually dividing section of main girder into grillages, a program is developed using VBA tool in AutoCAD environment, which can automatically search the divided position of grillage for section of single box with several rooms, and obtain characteristics of section of each grillage. Meanwhile calculational data can be stored as a text file, which is convenient to be directly called by commercial structural software. By comparing with the finite element software ANSYS, the reliability of the program and the accuracy of calculational results are verified. The program is ease to be amplified and transplanted owing to using the modularizational idea, and it greatly improves efficiency of setting up grillage model.


Sign in / Sign up

Export Citation Format

Share Document