scholarly journals Parametric Sensitivity Analysis of Rotor Angle Stability Indicators

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5023
Author(s):  
Ashish Shrestha ◽  
Francisco Gonzalez-Longatt

With the increasing penetration rate of Power Electronic Converter (PEC) based technologies, the electrical power systems are facing the problem of transient stability since the PEC based technologies do not contribute to the system inertia, and the proportion of synchronous generators (i.e., the source of inertia) is in decreasing rate. In addition, PEC based technologies’ components have poor inherent damping. It is very important to analyze the system characteristics of a power system to minimize the potential instabilities during the contingencies. This paper presents the parametric sensitivity analysis of the rotor angle stability indicators for the 39-bus New England power system. The indicators of rotor angle stability analysis such as critical fault clearing time (CCT), Eigenvalue points, damping ratio, frequency deviation, voltage deviation, and generator’s speed deviation are identified and analyzed for three case scenarios; each scenario has six sub-cases with different inertia constants. The results show that the CCTs for each component will be reduced if the inertia reduces at any section of a multi-machine power system. Although the applied three scenarios with six sub-cases are identified to be stable in this analysis, the decreasing inertia constant has significant impact on the power system dynamics.

Author(s):  
Selwa Fetissi ◽  
Djamel Labed ◽  
Imen Labed

Transient stability is an important aspect in the operation of electrical power system. In case of fault occurs in the system, the determining of fault clearing time of circuit breaker is considered one of the main factors to ensure power transfer of the system. This paper is aim to study the transient stability of single machine infinite bus system (SMIB), based on the rotor angle stability. The study is performed to determine the influence of the critical clearing time of the circuit breakers on the rotor angle stability of the generator in the case of three phase fault. For obtaining and determining numerically the nature of the rotor angle of machine, we applied the Step-by-step method for different values of fault clearing time. The results of simulation indicate that determine of critical clearing time is a major evaluation in stability studies. The system model is created in MATLAB/ SIMULINK software.


2018 ◽  
Vol 7 (4.24) ◽  
pp. 163
Author(s):  
R.S. Srinivas ◽  
P.V.Ramana Rao

This paper discusses the application of Fractional order PI controlled Static synchronous compensator for improvement rotor angle stability of inter connected power system. FACTS Controllers plays important role in enhancing the power system stability.Besides improving the stability margin of the power system it also aids the damping of inter area power oscillations. In the present work STATCOM is connected in multimachine power system .The dynamic response of the STATCOM is controlled by using fractional order controllers.The controller gains of the fractional controller are tuned by using PSO algorithm.It gives acceptable solutions to continuous non-linear systems with less computational effort. The performance of the proposed controller has been compared with integer order PI controllers at different locations of fault. In this paper a 3 machine 9 bus WSSC test power system is considered and simulated in MATLAB/SIMULINK.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1286
Author(s):  
Kishan Veerashekar ◽  
Halil Askan ◽  
Matthias Luther

Neighboring stand-alone hybrid microgrids with diesel generators (DGs) as well as grid-feeding photovoltaics (PV) and grid-forming battery storage systems (BSS) can be coupled to reduce fuel costs and emissions as well as to enhance the security of supply. In contrast to the research in control and small-signal rotor angle stability of microgrids, there is a significant lack of knowledge regarding the transient stability of off-grid hybrid microgrids in a cluster environment. Therefore, the large-signal rotor angle stability of pooled microgrids was assessed qualitatively and also quantitatively in this research work. Quantitative transient stability assessment (TSA) was carried out with the help of the—recently developed and validated—micro-hybrid method by combining time-domain simulations and transient energy function analyses. For this purpose, three realistic dynamic microgrids were modelled regarding three operating modes (island, interconnection, and cluster) as well as the conventional scenario “classical” and four hybrid scenarios (“storage”, “sun”, “sun & storage”, and “night”) regarding different instants of time on a tropical partly sunny day. It can be inferred that, coupling hybrid microgrids is feasible from the voltage, frequency, and also transient stability point of view. However, the risk of large-signal rotor angle instability in pooled microgrids is relatively higher than in islanded microgrids. Along with critical clearing times, new stability-related indicators such as system stability degree and corrected critical clearing times should be taken into account in the planning phase and in the operation of microgrids. In principle, a general conclusion concerning the best operating mode and scenario of the investigated microgrids cannot be drawn. TSA of pooled hybrid microgrids should be performed—on a regular basis especially in the grid operation—for different loading conditions, tie-line power flows, topologies, operating modes, and scenarios.


2021 ◽  
Vol 11 (23) ◽  
pp. 11359
Author(s):  
Giuseppe Marco Tina ◽  
Giovanni Maione ◽  
Sebastiano Licciardello ◽  
Domenico Stefanelli

Power systems are rapidly evolving to face the increasing penetration of renewable inverter-based generation units and to improve their reliability and safety. A power system is constantly exposed to sudden changes or disturbances that may affect its stability. In this paper, a comparative analysis of solutions to improve transient stability, both rotor angle and frequency stability, is performed. These solutions are SVC, STATCOM, a fast excitation system, and an additional parallel transmission line. Sensitivity analyses were performed to evaluate the effects of the location of the three-phase fault line and the most effective SVC or STATCOM installation bus. Based on these analyses, the worst-case fault is considered, and the critical fault clearing time is determined as an engineering parameter for comparing the different solutions. For the numerical analysis, the IEEE 9 bus system is considered, and the PowerWorld software tool is used. Rotor angle and frequency stability analyses were performed. Moreover, specifically for SVC and STATCOM, the effects of different values of short-circuit ratios were considered in the context of rotor angle stability analysis. As part of the frequency stability analysis, the use of the remuneration for load shedding service in Italy was considered to perform an economic analysis for SVC and STATCOM.


Sign in / Sign up

Export Citation Format

Share Document