scholarly journals How Much Can Small-Scale Wind Energy Production Contribute to Energy Supply in Cities? A Case Study of Berlin

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5523
Author(s):  
Alina Wilke ◽  
Zhiwei Shen ◽  
Matthias Ritter

In light of the global effort to limit the temperature rise, many cities have undertaken initiatives to become climate-neutral, making decentralized urban energy production more relevant. This paper addresses the potential of urban wind energy production with small wind turbines, using Berlin as an example. A complete framework from data selection to economic feasibility is constructed to enable the empirical assessment of wind energy for individual buildings and Berlin as a whole. Based on a detailed dataset of all buildings and hourly wind speed on a 1 km² grid, the results show that multiple turbines on suitable buildings can significantly contribute to households’ energy consumption but fall short of covering the full demand. For individual households, our economic evaluation strongly recommends the self-consumption of the produced electricity. The findings suggest that while the use of small wind turbines should be continuously encouraged, exploring other renewable resources or combination of wind and photovoltaic energy in the urban environment remains important.

Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5874
Author(s):  
Navid Goudarzi ◽  
Kasra Mohammadi ◽  
Alexandra St. St. Pé ◽  
Ruben Delgado ◽  
Weidong Zhu

Annual mean wind speed distribution models for power generation based on regional wind resource maps are limited by spatial and temporal resolutions. These models, in general, do not consider the impact of local terrain and atmospheric circulations. In this study, long-term five-year wind data at three sites on the North, East, and West of the Baltimore metropolitan area, Maryland, USA are statistically analyzed. The Weibull probability density function was defined based on the observatory data. Despite seasonal and spatial variability in the wind resource, the annual mean wind speed for all sites is around 3 m/s, suggesting the region is not suitable for large-scale power generation. However, it does display a wind power capacity that might allow for non-grid connected small-scale wind turbine applications. Technical and economic performance evaluations of more than 150 conventional small-scale wind turbines showed that an annual capacity factor and electricity production of 11% and 1990 kWh, respectively, are achievable. It results in a payback period of 13 years. Government incentives can improve the economic feasibility and attractiveness of investments in small wind turbines. To reduce the payback period lower than 10 years, modern/unconventional wind harvesting technologies are found to be an appealing option in this region. Key contributions of this work are (1) highlighting the need for studying the urban physics rather than just the regional wind resource maps for wind development projects in the build-environment, (2) illustrating the implementation of this approach in a real case study of Maryland, and (3) utilizing techno-economic data to determine suitable wind harnessing solutions for the studied sites.


Author(s):  
Jenn Adams

Wind energy in Ontario is gaining momentum as one of the most widely used renewable resources. Granted the opportunities and capacity for wind turbine production in Ontario, there is still resistance to implementation and development. This paper will examine rural community members perceptions based on a case study in Orono, Ontario. It will use the not-in-my-backyard (NIMBY) theory to examine which other factors such as health concerns, aesthetic value, and economic impacts influence members’ perceptions of wind energy. A survey was implemented through the Orono, ON Facebook group to gage displeasure, anxieties or support for the local wind turbines. Findings from this survey will help gage which factors are most important to community members. This paper will propose new policy adaptations to gain the most support from members living near wind farms in and outside of Orono.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3243
Author(s):  
Zi Lin ◽  
Xiaolei Liu ◽  
Ziming Feng

In this paper, the technical and economic feasibility of integrating SWTs (Small Wind Turbines) into remote oil production sites are investigated. Compared to large turbines in onshore and offshore wind farms, SWTs are more suitable for individual power generations. A comprehensive approach based on wind energy assessment, wind power prediction, and economic analysis is then recommended, to evaluate how, where, and when small wind production recovery is achievable in oilfields. Firstly, wind resource in oilfields is critically assessed based on recorded meteorological data. Then, the wind power potential is numerically tested using specified wind turbines with density-corrected power curves. Later, estimations of annual costs and energy-saving are carried out before and after the installation of SWT via the LCOE (Levelized Cost of Electricity) and the EROI (Energy Return on Investment). The proposed methodology was tested against the Daqing oilfield, which is the largest onshore oilfield in China. The results suggested that over 80% of the original annual costs in oil production could be saved through the integrations between wind energy and oil production.


Author(s):  
Ighball Baniasad Askari ◽  
Lina Baniasad Askari ◽  
Mohammad Mehdi Kaykhah

Wind data collected of the three synoptic sites for the period of Jul 2006 to Jun 2008 at the height of 40 m has been used to study the wind characteristics, monthly and annual wind energy potential for three agricultural districts in Kerman ( 30°15/N, 56°58/E ), Iran. Two statistical methods (Meteorological and Weibull) have been applied to determine the wind characteristics. Wind energy density, mean wind speeds and wind speed directions have been investigated. A technical assessment has been done and the electricity generation from five different wind turbines having capacity of (26 kW, 100 kW, 300 kW, 600 kW and 660 kW) has been calculated. The results show that all the locations studied are not suitable for electric wind application in a large-scale.


2017 ◽  
Vol 46 (2) ◽  
pp. 224-241 ◽  
Author(s):  
Jacob R. Fooks ◽  
Kent D. Messer ◽  
Joshua M. Duke ◽  
Janet B. Johnson ◽  
Tongzhe Li ◽  
...  

This study uses an experiment where ferry passengers are sold hotel room “views” to evaluate the impact of wind turbines views on tourists’ vacation experience. Participants purchase a chance for a weekend hotel stay. Information about the hotel rooms was limited to the quality of the hotel and its distance from a large wind turbine, as well as whether or not a particular room would have a view of the turbine. While there was generally a negative effect of turbine views, this did not hold across all participants, and did not seem to be effected by distance or hotel quality.


Author(s):  
M. A. Ancona ◽  
M. Bianchi ◽  
L. Branchini ◽  
A. De Pascale ◽  
F. Melino ◽  
...  

Abstract In order to increase the exploitation of the renewable energy sources, the diffusion of the distributed generation systems is grown, leading to an increase in the complexity of the electrical, thermal, cooling and fuel energy distribution networks. With the main purpose of improving the overall energy conversion efficiency and reducing the greenhouse gas emissions associated to fossil fuel based production systems, the design and the management of these complex energy grids play a key role. In this context, an in-house developed software, called COMBO, presented and validated in the Part I of this study, has been applied to a case study in order to define the optimal scheduling of each generation system connected to a complex energy network. The software is based on a non-heuristic technique which considers all the possible combination of solutions, elaborating the optimal scheduling for each energy system by minimizing an objective function based on the evaluation of the total energy production cost and energy systems environmental impact. In particular, the software COMBO is applied to a case study represented by an existing small-scale complex energy network, with the main objective of optimizing the energy production mix and the complex energy networks yearly operation depending on the energy demand of the users. The electrical, thermal and cooling needs of the users are satisfied with a centralized energy production, by means of internal combustion engines, natural gas boilers, heat pumps, compression and absorption chillers. The optimal energy systems operation evaluated by the software COMBO will be compared to a Reference Case, representative of the current energy systems set-up, in order to highlight the environmental and economic benefits achievable with the proposed strategy.


Sign in / Sign up

Export Citation Format

Share Document