scholarly journals Short-Circuit Fault Analysis of the Sen Transformer Using Phase Coordinate Model

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5638
Author(s):  
Liang Bu ◽  
Song Han ◽  
Jinling Feng

The Sen Transformer (ST) provides an economical solution for power flow control and voltage regulation. However, fault analysis and evaluation of the performance of the transmission protection system in the presence of a ST have not been investigated. Hence, a short-circuit model of the ST using the phase coordinate method is proposed in this paper. Firstly, according to the coupled-circuit ST model, the nodal admittance matrix between the sending end and receiving end of the ST was deduced. Subsequently, a fully decoupled mathematical model was established that can reflect three characteristics, including its winding connection structure, electrical parameters, and ground impedance. Thus, with the help of the phase-coordinate-based solving methodology, a short-circuit ST model may be built for various short-circuit faults. The MATLAB and PSCAD/EMTDC software were employed to carry out simulated analyses for an equivalent two-bus system. The short-circuit currents obtained from the time-domain simulation and the analytic calculation utilizing the proposed model reached an acceptable agreement, confirming the simulation’s effectiveness. Moreover, the variation of the fault currents with the variation of the compensating voltage after single-phase-to-ground and three-phase short-circuit faults was demonstrated and used to analyze the effect of the ST on the fault currents.

2012 ◽  
Vol 260-261 ◽  
pp. 525-531 ◽  
Author(s):  
Salman Badkubi

This paper presents the comprehensive implementation of Distributed Static Series Compensator (DSSC) to limit the fault currents in power systems. This is the first time that the limitation of fault currents with D-FACTS devices is addressed. DSSC is one of the D-FACTS families whichoperate in a similar manner as Static Synchronous Series Compensator (SSSC) but in smaller size, lower price and more capability. The effectiveness of the DSSC in fault current limitation is investigated through the series voltage effect upon the line. The short circuit current limitation strategy presented here exhibited that besides of the power flow control which is carried out by DSSC; it can also perform this additional function. In the following the potency of the DSSC in reduction of instantaneous voltage dip range during fault current limiting mode is clarified. Furthermore, it is disclosed that with performing more DSSC in the power system, the entire system voltage dip will be improved. In order to validate the claims, computer simulations using PSCAD/EMTDC are exploited.


Author(s):  
Harshal Vilas Patil

Now-a-days the demand of electricity or power areincreases day by day this results to transmits more power byIncreasing the transmission line capacity from one place to theother place. But during the transmission some faults areoccurred in the system, such as L-L fault (line to line), 1L-Gfault (single line to ground) and 2L-G fault (double line toground). These faults affect the power system equipmentswhich are connected to it. The main aim of this paper is tostudy or analysis of faults and also identifies the effect of thefault in transmission line along with bus system which isconnected to transmission line. Mainly the major faults in longtransmission lines is (L-G) single line to ground fault which areharmful to the electrical equipment. A proposed model intransmission line is simulated in MATLAB software to analysisand identified the faults. Fault block was taken from the sim-power system block library. The whole modeling andsimulation of different operating and different conditions offault on transmission line, their faults are L-G fault, 2L-Gfault, 3L-G fault and three line short circuit of the proposedwork is presented in this paper.


2021 ◽  
Vol 2125 (1) ◽  
pp. 012056
Author(s):  
Yiyang Yuan

Abstract With the development of intelligent distribution networks and the increasing demand for new energy access, the isolated bidirectional dc-dc converter has become a key link in modern energy transformation systems. In order to realize the functions of electrical transformation and electrical isolation of dc voltage, this paper proposes a structure of isolated bidirectional dc-dc converter, and analyzes it in detail. The proposed isolated bidirectional dc-dc converter can not only realize voltage transformation, but also have voltage regulation and fault isolation functions. Finally, based on the MATLAB/Simulink simulation platform, the proposed isolated bidirectional dc-dc converter topology is built and verified by simulation. The structure of isolated bidirectional dc-dc converter not only has the functions of voltage transformation and electrical isolation, but also has fault isolation, power flow control and other functions.


2018 ◽  
Vol 16 (5) ◽  
pp. 1337-1342 ◽  
Author(s):  
J. E. Valdez ◽  
J. C. Mayo ◽  
J. C. Rosas ◽  
A. Alejo ◽  
A. Llamas

Author(s):  
Hussein Taha Hussein ◽  
Mohamed Ammar ◽  
Mohamed Moustafa Hassan

This article presents a method for fault detection and diagnosis of stator inter-turn short circuit in three phase induction machines. The technique is based on the stator current and modelling in the dq frame using an Adaptive Neuro-Fuzzy artificial intelligence approach. The developed fault analysis method is illustrated using MATLAB simulations. The obtained results are promising based on the new fault detection approach.


Sign in / Sign up

Export Citation Format

Share Document