scholarly journals Thermal Performance Investigation of Slotted Fin Minichannel Heat Sink for Microprocessor Cooling

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6347
Author(s):  
Taha Baig ◽  
Zabdur Rehman ◽  
Hussain Ahmed Tariq ◽  
Shehryar Manzoor ◽  
Majid Ali ◽  
...  

Due to high heat flux generation inside microprocessors, water-cooled heat sinks have gained special attention. For the durability of the microprocessor, this generated flux should be effectively removed. The effective thermal management of high-processing devices is now becoming popular due to high heat flux generation. Heat removal plays a significant role in the longer operation and better performance of heat sinks. In this work, to tackle the heat generation issues, a slotted fin minichannel heat sink (SFMCHS) was investigated by modifying a conventional straight integral fin minichannel heat sink (SIFMCHS). SFMCHSs with fin spacings of 0.5 mm, 1 mm, and 1.5 mm were numerically studied. The numerical results were then compared with SIFMCHSs present in the literature. The base temperatures recorded for two slots per fin minichannel heat sink (SPFMCHS), with 0.5 mm, 1 mm, and 1.5 mm fin spacings, were 42.81 °C, 46.36 °C, and 48.86 °C, respectively, at 1 LPM. The reductions in base temperature achieved with two SPFMCHSs were 9.20 %, 8.74 %, and 7.39% for 0.5 mm, 1 mm, and 1.5 mm fin spacings, respectively, as compared to SIFMCHSs reported in the literature. The reductions in base temperature noted for three SPFMCHSs were 8.53%, 9.05%, and 5.95% for 0.5 mm, 1 mm, and 1.5 mm fin spacings, respectively, at 1 LPM, as compared to SIFMCHSs reported in the literature. In terms of heat transfer performance, the base temperature and thermal resistance of the 0.5 mm-spaced SPFMCHS is better compared to 1 mm and 1.5 mm fin spacings. The uniform temperature distribution at the base of the heat sink was observed in all cases solved in current work.

Author(s):  
Kazuhisa Yuki ◽  
Akira Matsui ◽  
Hidetoshi Hashizume ◽  
Koichi Suzuki

Heat transfer characteristics of micro-sized bronze particle-sintered porous heat sinks and copper minichannel-fins heat sinks are experimentally investigated in order to clarify the feasibility of a newly proposed micro/mini cooling device using fins-installed porous media. Regarding the porous heat sinks, fin effect toward more inside of the porous medium is promoted by sintering the porous heat sink on the heat transfer surface, which results in increasing the heat transfer performance up to 0.8MW/m2K at heat flux of 8.2MW/m2 though there still remains a large pressure loss issue. In addition, the results clarify that the heat exchanging area exists only in the vicinity of the heat transfer surface. As to the minichannel-fins heat sinks, the influence of the channel width and the fin thickness are evaluated in detail. As a result, the minichannel-fins heat sink having the narrower channel width (i.e. scale effect) and lower porosity (i.e. thicker fin thickness with larger heat capacity) achieves higher heat transfer performance up to 0.10MW/m2K at 8.3MW/m2. However, rapid increase of pressure loss, which is occasionally observed in a microchannel due to vapor bubbles choking the narrow channel, still remains as an issue under flow boiling conditions in the minichannel. Finally, heat transfer performance of the fin-installed porous heat sink is numerically predicted by the control volume method. The simulation confirms that the heat transfer coefficient at each wall superheat of 0 and 30 degrees has performance 2.5 times and 2.0 times higher than that of the normal fins, which indicates that this heat sink coupling the micro and mini channels has high potential as efficient cooling method under high heat flux conditions exceeding 10MW/m2.


2016 ◽  
Vol 2016 (0) ◽  
pp. I111
Author(s):  
Kio Takai ◽  
Kazuhisa Yuki ◽  
Yoshiki Indou ◽  
Risako Kibushi ◽  
Noriyuki Unno ◽  
...  

2017 ◽  
Author(s):  
Tomio Okawa ◽  
Junki Ohashi ◽  
Ryo Hirata ◽  
Koji Enoki

2013 ◽  
Vol 455 ◽  
pp. 466-469
Author(s):  
Yun Chuan Wu ◽  
Shang Long Xu ◽  
Chao Wang

With the increase of performance demands, the nonuniformity of on-chip power dissipation becomes greater, causing localized high heat flux hot spots that can degrade the processor performance and reliability. In this paper, a three-dimensional model of the copper microchannel heat sink, with hot spot heating and background heating on the back, was developed and used for numerical simulation to predict the hot spot cooling performance. The hot spot is cooled by localized cross channels. The pressure drop, thermal resistance and effects of hot spot heat flux and fluid flow velocity on the cooling of on-chip hot spots, are investigated in detail.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Abas Abdoli ◽  
George S. Dulikravich ◽  
Genesis Vasquez ◽  
Siavash Rastkar

Two-layer single phase flow microchannels were studied for cooling of electronic chips with a hot spot. A chip with 2.45 × 2.45 mm footprint and a hot spot of 0.5 × 0.5 mm in its center was studied in this research. Two different cases were simulated in which heat fluxes of 1500 W cm−2 and 2000 W cm−2 were applied at the hot spot. Heat flux of 1000 W cm−2 was applied on the rest of the chip. Each microchannel layer had 20 channels with an aspect ratio of 4:1. Direction of the second microchannel layer was rotated 90 deg with respect to the first layer. Fully three-dimensional (3D) conjugate heat transfer analysis was performed to study the heat removal capacity of the proposed two-layer microchannel cooling design for high heat flux chips. In the next step, a linear stress analysis was performed to investigate the effects of thermal stresses applied to the microchannel cooling design due to variations of temperature field. Results showed that two-layer microchannel configuration was capable of removing heat from high heat flux chips with a hot spot.


Sign in / Sign up

Export Citation Format

Share Document