Investigation of On-Chip Hot Spot Cooling Using Microchannel Heat Sink

2013 ◽  
Vol 455 ◽  
pp. 466-469
Author(s):  
Yun Chuan Wu ◽  
Shang Long Xu ◽  
Chao Wang

With the increase of performance demands, the nonuniformity of on-chip power dissipation becomes greater, causing localized high heat flux hot spots that can degrade the processor performance and reliability. In this paper, a three-dimensional model of the copper microchannel heat sink, with hot spot heating and background heating on the back, was developed and used for numerical simulation to predict the hot spot cooling performance. The hot spot is cooled by localized cross channels. The pressure drop, thermal resistance and effects of hot spot heat flux and fluid flow velocity on the cooling of on-chip hot spots, are investigated in detail.

2012 ◽  
Vol 134 (5) ◽  
Author(s):  
Avram Bar-Cohen ◽  
Peng Wang

The rapid emergence of nanoelectronics, with the consequent rise in transistor density and switching speed, has led to a steep increase in microprocessor chip heat flux and growing concern over the emergence of on-chip hot spots. The application of on-chip high flux cooling techniques is today a primary driver for innovation in the electronics industry. In this paper, the physical phenomena underpinning the most promising on-chip thermal management approaches for hot spot remediation, along with basic modeling equations and typical results are described. Attention is devoted to thermoelectric micro-coolers and two-phase microgap coolers. The advantages and disadvantages of these on-chip cooling solutions for high heat flux hot spots are evaluated and compared.


Author(s):  
Yong-Jiun Lee ◽  
Poh-Seng Lee ◽  
Siaw-Kiang Chou

Sectional oblique fins are employed in contrast to continuous fins in order to modulate the flow in microchannel heat sink. The breakage of continuous fin into oblique sections leads to re-initialization of boundary layers and generation of secondary flows which significantly enhance the cooling performance of the heat sink. In addition, oblique finned microchannel heat sink has the flexibility to tailor local heat transfer performance by varying its oblique fin pitch. Clusters of oblique fins at higher density can be created in order to promote greater degree of boundary layers redevelopment and secondary flows generation to provide more effective cooling at the high heat flux region. Thus the varying of oblique fin pitch can be exploited for hot spots mitigation. Simulation studies of silicon chip with hot spot shows more than 100% increment in local heat transfer coefficient at the high heat flux region for the variable pitch oblique finned microchannel compared with the conventional microchannel heat sink. Both the maximum temperature and its temperature gradient are reduced by 12.4°C as a result. Interestingly, there is only little or negligible pressure drop penalty associated with this novel heat transfer enhancement scheme in contrast to conventional enhancement techniques.


Author(s):  
J. M. Wu ◽  
J. Y. Zhao

High power electronics are widely used in many different areas such as integrated circuit (IC) boards in nuclear reactor control system. Thermal management of electronic devices has been a topic of great interest among many researchers over the last few decades. Microchannel is one of several high-heat-flux removal techniques. Nanofluids with enhanced thermal conductivity and strong temperature- and size-dependent thermal properties are expected to be utilized in microchannels as coolants, which leads to a promising future for such high-heat-flux systems as cooling systems. The performance of the microchannel heat sink (MCHS) using water and Al2O3/water nanofluids, with consideration of different substrate materials, is numerically investigated and compared in the present paper to identify the combined effects of working fluids and substrate materials on the thermal resistance, pumping power and temperature distribution on the substrate surface of a heat sink.


Author(s):  
Avram Bar-Cohen ◽  
Peng Wang

The rapid emergence of nanoelectronics, with the consequent rise in transistor density and switching speed, has led to a steep increase in microprocessor chip heat flux and growing concern over the emergence of on-chip “hot spots”. The application of on-chip high heat flux cooling techniques is today a primary driver for innovation in the electronics industry. In this paper, the physical phenomena underpinning the most promising on-chip thermal management approaches for hot spot remediation, along with basic modeling equations and typical results are described. Attention is devoted to thermoelectric microcoolers — using mini-contcat enhancement and in-plane thermoelectric currents, orthotropic TIM’s/heat spreaders, and phase-change microgap coolers.


2020 ◽  
Vol 18 ◽  
pp. 100587
Author(s):  
Essam M. Abo-Zahhad ◽  
Shinichi Ookawara ◽  
Ali Radwan ◽  
M.F. Elkady ◽  
A.H. El-Shazly

2019 ◽  
Vol 29 (5) ◽  
pp. 1333-1344 ◽  
Author(s):  
Qi Yang ◽  
Jianyin Miao ◽  
Jingquan Zhao ◽  
Yanpei Huang ◽  
Weichun Fu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document