scholarly journals Mechanical Switch Based Adaptive Fault Ride-through Strategy for Power Quality Improvement Device

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6623
Author(s):  
Yu Shen ◽  
Wei Hu ◽  
Yaoyao Xiao ◽  
Ganghua Zhang ◽  
Mingyu Han ◽  
...  

Cascaded H-bridge power quality improving device (PQID) has garnered extensive attention for its flexible electric energy conversion and fast voltage response. However, the failure rate of PQID is relatively high due to the use of large numbers of power electronic devices. This paper proposes a mechanical-switch based adaptive fault ride-through strategy for improving the operational stability and power supply reliability of PQID. According to the features of the topology and working principle of PQID, this paper summarized the types of internal faults and analyzed the characteristics of different types of faults. Based on the shortcomings of existing mechanical switches as a bypass method, corresponding adaptive fault ride-through strategies are proposed for different types of faults, and a comprehensive simulation test has been carried out. The results show that the proposed strategy can adaptively ride through unit faults and effectively improve the output waveform quality during the ride through time.

Whenever a fault occurs at any stage of the power system, the magnitude of voltage and phase angle both are changed. In the distribution system, there are sensitive loads such as digital computers; motor drives, etc are connected with a system. Due to fault conditions, unbalancing in voltage may occur. So it may cause of damage to equipment. Fault in the distribution system may lead to a voltage dip in the system; it is the big problem of power quality. So it more important to understand the power quality and it is also important to analyze voltage dip propagation when different types of faults occur in the system. This research paper summarizes the results from a number of different voltage dips investigations and their verification of mathematical calculations. These investigations involve characterizing the voltage dips performance.


Author(s):  
Andi Pawawoi ◽  
Zuheldi Zuheldi ◽  
Fajril Akbar ◽  
Refdinal Nazir

In public and commercial buildings, the reduction of electricity consumption activities can be conducted through 3 paths, including improving the quality level of electric power, increasing the efficiency of electrical equipment, and reducing the waste of electric energy use. In this paper, the energy losses reduction potential on the distribution line of Engineering Faculty, Andalas University buildings through electric power quality improvement are analyzed. Power Quality (PQ) variables that considered in this analysis include power factor, unbalance current load and harmonics distortion. Analysis of correlation between PQ variables is required to determine the power loss on the distribution line of buildings. Using data of PQ variables recorded by Fluke Power Analyzer 435 series II, the energy losses of the distribution line without/with PQ improvement for each building is calculated. Analysis results have shown that the reduction potential is proportional to the value of PQ variables. Administrative faculty building with poor power quality has the potential to reduce its energy losses on the distribution line by 52.62% through power quality improvement. Civil engineering building group with quite good power quality only has the potential to reduce energy losses by 32.81%. Overall, the buildings in this faculty have the potential to reduce energy losses on distribution lines by 34.42% through its power quality improvement.


2018 ◽  
Vol 1 (1) ◽  
pp. 54-66
Author(s):  
Rakan Khalil Antar ◽  
Basil Mohammed Saied ◽  
Rafid Ahmed Khalil

A new control strategy for active power filters is proposed, modeled and implemented in order to improve the power quality of a line commutated converter High voltage DC link. The ability of reactive power and harmonics reductions are generally met by using passive and active power filters. In this paper, modified active power filter with a modified harmonics pulse width modulation algorithm is used to minimize the source harmonics and force the AC supply current to be in the same phase with AC voltage source at both sending and receiving sides of a line commutated converter high voltage DC link. Therefore, it is considered as power factor corrector and harmonics eliminator with random variations in the load current. The modified harmonics pulse width modulation algorithm is applicable for active power filter based on a three-phase five-level and seven-level cascaded H-bridge voltage source inverter. Simulation results show that the suggested modified multilevel active power filters improve total harmonics distortion of both voltage and current with almost unity effective power factor at both AC sides of high voltage DC link. Therefore, modified active power filter is an effective tool for power quality improvement and preferable for line commutated converter high voltage DC link at different load conditions.


Sign in / Sign up

Export Citation Format

Share Document