scholarly journals Doughnut-Shaped and Top Hat Solar Laser Beams Numerical Analysis

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7102
Author(s):  
Miguel Catela ◽  
Dawei Liang ◽  
Cláudia R. Vistas ◽  
Dário Garcia ◽  
Bruno D. Tibúrcio ◽  
...  

Aside from the industry-standard Gaussian intensity profile, top hat and non-conventional laser beam shapes, such as doughnut-shaped profile, are ever more required. The top hat laser beam profile is well-known for uniformly irradiating the target material, significantly reducing the heat-affected zones, typical of Gaussian laser irradiation, whereas the doughnut-shaped laser beam has attracted much interest for its use in trapping particles at the nanoscale and improving mechanical performance during laser-based 3D metal printing. Solar-pumped lasers can be a cost-effective and more sustainable alternative to accomplish these useful laser beam distributions. The sunlight was collected and concentrated by six primary Fresnel lenses, six folding mirror collectors, further compressed with six secondary fused silica concentrators, and symmetrically distributed by six twisted light guides around a 5.5 mm diameter, 35 mm length Nd:YAG rod inside a cylindrical cavity. A top hat laser beam profile (Mx2 = 1.25, My2 = 1.00) was computed through both ZEMAX® and LASCAD® analysis, with 9.4 W/m2 TEM00 mode laser power collection and 0.99% solar-to-TEM00 mode power conversion efficiencies. By using a 5.8 mm laser rod diameter, a doughnut-shaped solar laser beam profile (Mx2 = 1.90, My2 = 1.00) was observed. The 9.8 W/m2 TEM00 mode laser power collection and 1.03% solar-to-TEM00 mode power conversion efficiencies were also attained, corresponding to an increase of 2.2 and 1.9 times, respectively, compared to the state-of-the-art experimental records. As far as we know, the first numerical simulation of doughnut-shaped and top hat solar laser beam profiles is reported here, significantly contributing to the understanding of the formation of such beam profiles.

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5437
Author(s):  
Hugo Costa ◽  
Joana Almeida ◽  
Dawei Liang ◽  
Miguel Catela ◽  
Dário Garcia ◽  
...  

An alternative multirod solar laser end-side-pumping concept, based on the megawatt solar furnace in France, is proposed to significantly improve the TEM00-mode solar laser output power level and its beam brightness through a novel zigzag beam merging technique. A solar flux homogenizer was used to deliver nearly the same pump power to multiple core-doped Nd:YAG laser rods within a water-cooled pump cavity through a fused silica window. Compared to the previous multibeam solar laser station concepts for the same solar furnace, the present approach can allow the production of high-power TEM00-mode solar laser beams with high beam brightness. An average of 1.06 W TEM00-mode laser power was numerically extracted from each of 1657 rods, resulting in a total of 1.8 kW. More importantly, by mounting 399 rods at a 30° angle of inclination and employing the beam merging technique, a maximum of 5.2 kW total TEM00-mode laser power was numerically extracted from 37 laser beams, averaging 141 W from each merged beam. The highest solar laser beam brightness figure of merit achieved was 148 W, corresponding to an improvement of 23 times in relation to the previous experimental record.


2021 ◽  
pp. 1-11
Author(s):  
Miguel Catela ◽  
Dawei Liang ◽  
Cláudia R. Vistas ◽  
Dário Garcia ◽  
Bruno D. Tibúrcio ◽  
...  

2009 ◽  
Author(s):  
Jonghoon Yi ◽  
Kangin Lee ◽  
Kwangwon Lee ◽  
Lee Soon Park ◽  
Jin Hyuk Kwon

2018 ◽  
Vol 9 (1) ◽  
pp. 56-65 ◽  
Author(s):  
M. A. Bezuglyi ◽  
N. V. Bezuglaya ◽  
S. Kostuk

The correct accounting of laser emitter parameters for improvement of diagnostic authenticity of methods of optical biomedical diagnostic is important problem for applied biophotonic tasks. The purpose of the current research is estimation of influence of energy distribution profile in transversal section of laser beam on light scattering by human skin layers at photometry by ellipsoidal reflectors.Biomedical photometer with ellipsoidal reflectors for investigation of biological tissue specimens in transmitted and reflected light uses laser probing radiation with infinitely thin, Gauss-type and uniform cross-section profile. Distribution of beams with denoted profiles, which consist of 20 million photons with wavelength 632.8 nm, was modeled by using of Monte-Carlo simulation in human skin layers (corneous layer, epidermis, derma and adipose tissue) of various anatomic thickness and with ellipsoidal reflectors with focal parameter equal to 16.875 mm and eccentricity of 0.66.The modeling results represent that illuminance distribution in zones of photometric imaging is significantly influenced by the laser beam cross-section profile for various thickness of corneous layer and epidermis in transmitted and reflected light, and also derma in reflected light. Illuminance distribution for adipose tissue in reflected and transmitted light, and also derma in transmitted light, practically do not depend of laser beam profile for anatomic thicknesses, which are appropriate for human skin on various sections of body.There are represented results of modified Monte-Carlo simulation method for biomedical photometer with ellipsoidal reflectors during biometry of human skin layers. For highly scattered corneous layer and epidermis the illumination of middle and external rings of photometric images changes depending from the laser beam profile for more than 50 % in transmitted and 30 % in reflected light. For weakly scattering skin layers (derma and adipose layer) the influence of profile can be observed only for derma in reflected layer and is equal not more than 15 %. 


2013 ◽  
Vol 40 (6) ◽  
pp. 0608003
Author(s):  
冯国斌 Feng Guobin ◽  
王振宝 Wang Zhenbao ◽  
冯刚 Feng Gang ◽  
杨鹏翎 Yang Pengling ◽  
王群书 Wang Qunshu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document