scholarly journals Natural Convection Effect on Solidification Enhancement in a Multi-Tube Latent Heat Storage System: Effect of Tubes’ Arrangement

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7489
Author(s):  
Mohammadreza Ebrahimnataj Tiji ◽  
Jasim M. Mahdi ◽  
Hayder I. Mohammed ◽  
Hasan Sh. Majdi ◽  
Abbas Ebrahimi ◽  
...  

The solidification process in a multi-tube latent heat energy system is affected by the natural convection and the arrangement of heat exchanger tubes, which changes the buoyancy effect as well. In the current work, the effect of the arrangement of the tubes in a multi-tube heat exchanger was examined during the solidification process with the focus on the natural convection effects inside the phase change material (PCM). The behavior of the system was numerically analyzed using liquid fraction and energy released, as well as temperature, velocity and streamline profiles for different studied cases. The arrangement of the tubes, considering seven pipes in the symmetrical condition, are assumed at different positions in the system, including uniform distribution of the tubes as well as non-uniform distribution, i.e., tubes concentrated at the bottom, middle and the top of the PCM shell. The model was first validated compared with previous experimental work from the literature. The results show that the heat rate removal from the PCM after 16 h was 52.89 W (max) and 14.85 W (min) for the cases of uniform tube distribution and tubes concentrated at the bottom, respectively, for the proposed dimensions of the heat exchanger. The heat rate removal of the system with uniform tube distribution increases when the distance between the tubes and top of the shell reduces, and increased equal to 68.75 W due to natural convection effect. The heat release rate also reduces by increasing the temperature the tubes. The heat removal rate increases by 7.5%, and 23.7% when the temperature increases from 10 °C to 15 °C and 20 °C, respectively. This paper reveals that specific consideration to the arrangement of the tubes should be made to enhance the heat recovery process attending natural convection effects in phase change heat storage systems.

2019 ◽  
Vol 18 (1) ◽  
pp. 78
Author(s):  
F. C. Spengler ◽  
B. Oliveira ◽  
R. C. Oliveski ◽  
L. A. O. Rocha

The thermal heat storage it’s an effective way to suit the energy availability with the demand schedule. It can be stored in the means of sensible or latent heat, the latter applying a material denominated Phase Change Material (PCM), which is provided as organic compounds, hydrated salts, paraffins, among others. The latent heat storage systems offer several advantages, like the practically isothermal process of loading and unloading and the high energy density. However, the low thermal conductivity makes the cycle prolonged on these systems, restricting its applicability. Applying computational fluid dynamics, the behavior of the PCM melting process was studied in cylindrical cavities with horizontal and vertical fins, aiming the optimization of the fin geometry. In this way the fin area was kept constant, varying its aspect ratio. The numerical model was validated with results from the literature and it’s composed of the continuity, momentum and energy equations increased by the phase change model. Qualitative and quantitative results are presented, referring to mesh independence, contours of velocity, net fraction and temperature at different moments of the process. The results of the study indicate that the position of the fin in the heat exchanger influences the melting process, although the vertical fins have a faster total melting process, horizontal fins can reach larger partial liquid fractions in less time in the heat exchanger. Such as the position of the fin, the increase of its length propitiates the reduction of the melting time, evidencing the optimal aspect ratio.


1993 ◽  
Vol 115 (4) ◽  
pp. 240-243 ◽  
Author(s):  
Ch. Charach

This communication extends the thermodynamic analysis of latent heat storage in a shell-and-tube heat exchanger, developed recently, to the complete heat storage-removal cycle. Conditions for the cyclic operation of this system are formulated within the quasi-steady approximation for the axisymmetric two-dimensional conduction-controlled phase change. Explicit expressions for the overall number of entropy generation units that account for heat transfer and pressure drop irreversibilities are derived. Optimization of this figure of merit with respect to the freezing point of the phase-change material and with respect to the number of heat transfer units is analyzed. When the frictional irreversibilities of the heat removal stage are negligible, the results of these studies are in agreement with those developed recently by De Lucia and Bejan (1991) for a one-dimensional latent heat storage system.


2019 ◽  
Vol 29 (5) ◽  
pp. 1741-1755 ◽  
Author(s):  
Mohammad M. Hosseini ◽  
Asghar B. Rahimi

Purpose Reducing discrepancy between energy demand and supply has been a controversial issue among researchers. Thermal energy storage is a technique to decrease this difference to increase the thermal efficiency of systems. Latent heat thermal energy storage has interested many researchers over the past few decades because of its high thermal energy density and constant operating temperature. The purpose of this paper is to provide a numerical study of the solidification process in a triplex tube heat exchanger containing phase change material (PCM) RT82. Design/methodology/approach A two-dimensional transient model was generated using finite volume method and regarding enthalpy-porosity technique. After that, a detailed and systematic approach has been presented to modify longitudinal fins’ configuration to enhance heat transfer rate in PCMs and reducing solidification time. The numerical results of this study have been validated by reference experimental results. Findings The ultimate model reduced solidification time up to 21.1 per cent of the Reference model which is a substantial improvement. Moreover, after testing different arrangements of rectangular fins and studying the flow pattern of liquid PCM during solidification, two general criteria was introduced so that engineers can reach the highest rate of heat transfer for a specified value of total surface area of fins. Finally, the effect of considering natural convection during solidification was studied, and the results showed that disregarding natural convection slows down the solidification process remarkably in comparison with experimental results and in fact, this assumption generates non-real estimation of solidification process. Originality/value The arrangement of the fins to have the best possible solidification time is the novelty in this paper.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Nan Hu ◽  
Zi-Qin Zhu ◽  
Zi-Rui Li ◽  
Jing Tu ◽  
Li-Wu Fan

Toward accelerated latent heat storage, the unconstrained melting heat transfer in spherical capsules was revisited experimentally in the presence of nano-enhanced phase-change materials (NePCMs), with an emphasis on the influence of capsule size on the rates of melting, heat transfer, and latent heat storage. It was shown that increasing the size of the spherical capsule leads to two competing effects, i.e., thicker molten layer in the close-contact melting (CCM) region and stronger natural convection. However, the NePCM with a high loading (3 wt % graphite nanoplatelets (GNPs)) is not preferred for all capsule sizes as a result of the significantly deteriorated heat transfer in both CCM and natural convection, because the dramatic viscosity growth at such a high loading leads to increased thermal resistance across the molten layer and loss of natural convection that overweigh the increased thermal conductivity. The 1 wt % NePCM sample was exhibited to be able to facilitate latent heat storage for two cases, i.e., in the smallest capsule having a radius of 14.92 mm at a higher wall superheat of 30 °C and in the intermedium 24.85 mm capsule at a lower wall superheat of only 10 °C. It was suggested that a relatively low loading of a specific NePCM can cause a faster rate of latent heat storage over the baseline case of the matrix phase-change material (PCM), if the capsule size (and the wall superheat) can be adjusted properly to regulate the molten layer thickness and the intensity of natural convection.


Sign in / Sign up

Export Citation Format

Share Document