scholarly journals Research on a Solar Hybrid Trigeneration System Based on Exergy and Exergoenvironmental Assessments

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7560
Author(s):  
Eduardo J. C. Cavalcanti ◽  
João Victor M. Ferreira ◽  
Monica Carvalho

The environmental performance of a combined cooling, heating, and power system is analyzed in this study at a component-level using a SPECO-based exergoenvironmental analysis. The engine consumes natural gas and produces 168.6 kW net power. The waste heat is recovered by a LiBr-H2O absorption chiller and a heat exchanger, which are used for cooling and heating purposes. The energy system is assisted by a solar field. An environmental Life Cycle Assessment quantifies the environmental impacts of the system, and these data are combined with exergy evaluations. The highest total environmental impact rate, 23,740.16 mPt/h, is related to the internal combustion engine, of which pollutant formation is the primary source of environmental impact. Compared with a non-renewable energy system, the solar-assisted trigeneration system decreased the environmental impact per exergy unit of chilled water by 10.99%. Exergoenvironmental performance can be further improved by enhancing the exergy efficiency of the solution pump and high-pressure generator (HG), and by employing a treatment to remove nitrogen oxides in the reciprocating engine.

Author(s):  
Diana K. Grauer ◽  
Michael E. Reed

This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.


Author(s):  
Diana K. Grauer ◽  
Michael E. Reed

This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.


2021 ◽  
Vol 13 (21) ◽  
pp. 11696
Author(s):  
Ahmad Baroutaji ◽  
Arun Arjunan ◽  
John Robinson ◽  
Tabbi Wilberforce ◽  
Mohammad Ali Abdelkareem ◽  
...  

Significant research efforts are directed towards finding new ways to reduce the cost, increase efficiency, and decrease the environmental impact of power-generation systems. The poly-generation concept is a promising strategy that enables the development of a sustainable power system. Over the past few years, the Proton Exchange Membrane Fuel Cell-based Poly-Generation Systems (PEMFC-PGSs) have received accelerated developments due to the low-temperature operation, high efficiency, and low environmental impact. This paper provides a comprehensive review of the main PEMFC-PGSs, including Combined Heat and Power (CHP) co-generation systems, Combined Cooling and Power (CCP) co-generation systems, Combined Cooling, Heat, and Power (CCHP) tri-generation systems, and Combined Water and Power (CWP) co-generation systems. First, the main technologies used in PEMFC-PGSs, such as those related to hydrogen production, energy storage, and Waste Heat Recovery (WHR), etc., are detailed. Then, the research progresses on the economic, energy, and environmental performance of the different PEMFC-PGSs are presented. Also, the recent commercialization activities on these systems are highlighted focusing on the leading countries in this field. Furthermore, the remaining economic and technical obstacles of these systems along with the future research directions to mitigate them are discussed. The review reveals the potential of the PEMFC-PGS in securing a sustainable future of the power systems. However, many economic and technical issues, particularly those related to high cost and degradation rate, still need to be addressed before unlocking the full benefits of such systems.


2012 ◽  
Vol 170-173 ◽  
pp. 2747-2750
Author(s):  
Xi Ling Zhao ◽  
Zhong Hai Zheng ◽  
Lin Fu ◽  
Yan Li

How to use the waste heat deeply are a critical issue for BCHP (Building combined cooling heating and power) system. A BCHP system with a soil source absorption heat pump driven by the waste heat is proposed. The system is composed of an internal combustion engine, a soil source absorption heat pump driven by the flue gas, and other assistant facilities, such as pumps, fans, and end user devices. In the winter, the flue gas is used to drive absorption heat pump to recover the waste heat of the soil source and the condensation heat of the flue gas simultaneously, and in the summer, the waste heat of the flue gas is used to drive absorption heat pump to cooling, and the heat sink is the soil. In the paper, the configuration of this kind of system is designed, and the energy analysis of the system is done all the year. Compared with the conventional BCHP system, the operation cost is lowered greatly and the increased investment could be returned within one year. It is show that the system is the efficient integration of cleaning energy, renewable energy, the discharge of the flue gas could be reduced to below 30°C, and the water steam could be catch to avoid the white smoke of the stack. The energy saving in space heating could be 66% compared with the conventional BCHP systems.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1279
Author(s):  
Amaya Martínez-Gracia ◽  
Sergio Usón ◽  
Mª Teresa Pintanel ◽  
Javier Uche ◽  
Ángel A. Bayod-Rújula ◽  
...  

A real case study of an energy system based on a Solar Assisted Heat Pump (SAHP) fed by hybrid photovoltaic-thermal solar panels (PVT) and seasonal storage (SS) is presented in this paper. Exergy and exergy cost analyses are proposed as complementary methods for the assessment and better understanding of the efficiency of this cogeneration solar configuration. The system performance takes advantage of storage heat in summer, when the solar resource is high in Spain, and is then later consumed during the cold winter (heating season). The building is devoted to social housing, and it is currently under construction. The assessment is based on simulations developed using TRNSYS, a dynamic simulation software for energy systems. Results show that the unit exergy cost of the solar field is around 6. The cost of the seasonal storage is higher, about 13, and its formation is affected both by its own irreversibility and by the irreversibility of the PVT solar field. The cost of the heat delivered by the heat pump is around 15, being affected by all the upstream units and even by the grid. Besides, the analysis points out strategies for improving the system efficiency, such as increasing the size of the storage tank or improving the control strategy of the boiler.


Sign in / Sign up

Export Citation Format

Share Document