scholarly journals Recent Advances of Film–Forming Kinetics in Organic Solar Cells

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7604
Author(s):  
Qiuju Liang ◽  
Jianhong Yao ◽  
Zhangbo Hu ◽  
Puxin Wei ◽  
Haodong Lu ◽  
...  

Solution–processed organic solar cells (OSC) have been explored widely due to their low cost and convenience, and impressive power conversion efficiencies (PCEs) which have surpassed 18%. In particular, the optimization of film morphology, including the phase separation structure and crystallinity degree of donor and acceptor domains, is crucially important to the improvement in PCE. Considering that the film morphology optimization of many blends can be achieved by regulating the film–forming process, it is necessary to take note of the employment of solvents and additives used during film processing, as well as the film–forming conditions. Herein, we summarize the recent investigations about thin films and expect to give some guidance for its prospective progress. The different film morphologies are discussed in detail to reveal the relationship between the morphology and device performance. Then, the principle of morphology regulating is concluded with. Finally, a future controlling of the film morphology and development is briefly outlined, which may provide some guidance for further optimizing the device performance.

Organic solar cells (OSCs) are discussed at length in terms of its performance leading to the generation of electricity. The key materials required for OSCs are the small organic molecules having donor and acceptor with suitable light absorption and electro-chemical properties of low energy band gap. Various structural scaffolds are highlighted with their structural design leading to film forming in an orderly manner and this morphology of film having a pivotal role in photo-induced charge separation, migration and collection at an electrode. Present day research informs that OSCs involving non fullerene based donors and acceptors are functioning with high photo conversion efficiency [PCE] of >17% and are promising candidates for practical applications.


2013 ◽  
Vol 4 ◽  
pp. 680-689 ◽  
Author(s):  
Gisela L Schulz ◽  
Marta Urdanpilleta ◽  
Roland Fitzner ◽  
Eduard Brier ◽  
Elena Mena-Osteritz ◽  
...  

The optimization of solution-processed organic bulk-heterojunction solar cells with the acceptor-substituted quinquethiophene DCV5T-Bu 4 as donor in conjunction with PC61BM as acceptor is described. Power conversion efficiencies up to 3.0% and external quantum efficiencies up to 40% were obtained through the use of 1-chloronaphthalene as solvent additive in the fabrication of the photovoltaic devices. Furthermore, atomic force microscopy investigations of the photoactive layer gave insight into the distribution of donor and acceptor within the blend. The unique combination of solubility and thermal stability of DCV5T-Bu 4 also allows for fabrication of organic solar cells by vacuum deposition. Thus, we were able to perform a rare comparison of the device characteristics of the solution-processed DCV5T-Bu 4 :PC61BM solar cell with its vacuum-processed DCV5T-Bu 4 :C60 counterpart. Interestingly in this case, the efficiencies of the small-molecule organic solar cells prepared by using solution techniques are approaching those fabricated by using vacuum technology. This result is significant as vacuum-processed devices typically display much better performances in photovoltaic cells.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Michal Radziwon ◽  
André Luis Fernandes Cauduro ◽  
Morten Madsen ◽  
Horst-Günter Rubahn

Recent efforts in research and development of small molecule based organic solar cells have led to power conversion efficiencies exceeding 10%. Understanding the incorporated interfaces in these devices is an utterly important parameter for their improvement. Here we investigate the influence ofα-sexithiophene (α-6T) nanostructures on the performance parameters ofα-6T/C60inverted bilayer solar cells. Byin situcontrolled growth, crystallineα-6T nanostructures are formed in the devices and a correlation between the morphology of the structures and the device performance is presented. Under certain, well-defined circumstances, we observe an efficiency increase of around 100% when implementing crystalline nanostructures.


2013 ◽  
Vol 1493 ◽  
pp. 317-322 ◽  
Author(s):  
Marcos Soldera ◽  
Emiliano Estrada ◽  
Kurt Taretto

ABSTRACTDespite organic solar cells have recently shown remarkable high power conversion efficiencies approaching 10%, further improvements are required to provide a low-cost alternative to inorganic photovoltaics. Optical losses related to insufficient light trapping and parasitic absorption of the contact layers limit drastically the photocurrent delivered by the cells. Textured surfaces, such as V-grooves (2D) and pyramids (3D), can provide better light coupling into the conformally deposited solar cells. In this work, we analyze the enhancement in light absorption in textured solar cells based on copper phtalocyanine (CuPc) and fullerene (C60) on the micro- and submicroscale. The analysis is carried out with the aid of the finite element method in 2D and 3D, taking into account interference as well as reflection and refraction of the incident AM1.5G spectrum. The results show that both type of structured cells perform better than planar cells reaching up to 23% improvement in maximum photocurrent for normal incidence. We also explore the lateral inhomogeneities of the generation rate within the active layers and their potential effect on the exciton collection efficiency.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Kazuhiro Nakabayashi ◽  
Hideharu Mori

All-polymer solar cells are fabricated by using poly(3-hexylthiophene) (P3HT) and fully conjugated donor-acceptor (D-A) block copolymer (P3HT-PNBI-P3HT) as donor and acceptor materials, respectively. Atomic force microscopy (AFM) and grazing incidence wide angle X-ray scattering (GIWAXS) analyses reveal that device performance strongly depends on the P3HT:P3HT-PNBI-P3HT thin film morphology. Indeed, theπ-πstacking nanomorphology rich in the edge-on orientation is formed in the P3HT:P3HT-PNBI-P3HT thin film by optimizing the fabrication conditions, for example, thermal annealing temperature and cast solvent. Consequently, the power conversion efficiency (PCE) of 1.60% is achieved with an open-circuit voltage (Voc) of 0.59 V, short-current (Jsc) of 4.43 mA/cm2, and fill factor (FF) of 0.61. These results suggest that P3HT-PNBI-P3HT has the huge potential for the usage as a nonfullerene acceptor material.


2015 ◽  
Vol 8 (2) ◽  
pp. 520-525 ◽  
Author(s):  
Jingbo Zhao ◽  
Yunke Li ◽  
Haoran Lin ◽  
Yuhang Liu ◽  
Kui Jiang ◽  
...  

Non-fullerene organic solar cells with power conversion efficiencies of up to 6.3% are reported using properly matched donor and acceptor.


2020 ◽  
Vol 8 (4) ◽  
pp. 1475-1476
Author(s):  
Yecheng Zhou ◽  
Guankui Long ◽  
Ailin Li ◽  
Angus Gray-Weale ◽  
Yongsheng Chen ◽  
...  

Correction for ‘Towards predicting the power conversion efficiencies of organic solar cells from donor and acceptor molecule structures’ by Yecheng Zhou et al., J. Mater. Chem. C, 2018, 6, 3276–3287.


2018 ◽  
Vol 6 (13) ◽  
pp. 3276-3287 ◽  
Author(s):  
Yecheng Zhou ◽  
Guankui Long ◽  
Ailin Li ◽  
Angus Gray-Weale ◽  
Yongsheng Chen ◽  
...  

In this study, we developed a multiscale simulation framework to estimate the power conversion efficiencies of bulk heterojunction organic solar cells only based on the molecular structures of the donor and acceptor.


Sign in / Sign up

Export Citation Format

Share Document