scholarly journals Non-Coaxially Rotating Motion in Casson Martial along with Temperature and Concentration Gradients via First-Order Chemical Reaction

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7784
Author(s):  
Noman Jabbar ◽  
Muhammad Bilal Hafeez ◽  
Sameh Askar ◽  
Umar Nazir

The effect of non-coaxial rotation on the transport of mass subjected to first-order chemical reaction is studied analytically. The effects of thermal radiation, buoyancy, constructive and destructive chemical reactions along with Casson fluid in rotating frame are discussed. Time evolution of primary and secondary velocities, energy and solute particles are analyzed. The behavior of flow under the variation of intensity of magnetic field is also investigated. Evolutionary behavior of primary velocity is opposite to the evolutionary behavior of secondary velocity. The impact of buoyant force on primary velocity is opposite to the role of buoyant force on the secondary velocity. The evolutionary behavior of temperature is also examined and a remarkable enhancement in temperature is noticed. Thermal radiation causes the fluid to be cooled down as heat energy is escaped by thermal radiation. Evolutionary behavior of concentration is also analyzed and an increasing of concentration versus time is noted. Destructive chemical reaction results a remarkable reduction in the concentration and vice versa for generative chemical reaction.

1979 ◽  
Vol 44 (5) ◽  
pp. 1388-1396
Author(s):  
Václav Kolář ◽  
Zdeněk Brož

Relations describing the mass transfer accompanied by an irreversible first order chemical reaction are derived, based on the formerly published general theoretical concepts of interfacial mass transfer. These relations are compared with experimental results taken from literature.


2021 ◽  
Vol 13 (3) ◽  
pp. 785-795
Author(s):  
U. J. Das

The main objective of this study is to investigate the effects of the Casson fluid parameter on an incompressible, magnetohydrodynamic boundary layer flow of a Casson fluid past a moving porous inclined plate in the presence of heat source and first-order chemical reaction. The governing partial differential equations are converted into ordinary differential equations using similarity transformation and then are solved numerically, adopting bv4pc method. The effects of relevant parameters on the velocity, temperature and concentration profiles are analyzed graphically. Also, tabular form is used to present skin friction, heat transfer and mass transfer. This investigation reveals that the Casson fluid parameter enhances the fluid velocity, skin friction and Sherwood number, while the Nusselt number decreases.


Sign in / Sign up

Export Citation Format

Share Document