fluid parameter
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 44)

H-INDEX

9
(FIVE YEARS 4)

2022 ◽  
Vol 18 ◽  
Author(s):  
Maria Yasin ◽  
Sadia Hina ◽  
Rahila Naz ◽  
Thabet Abdeljawad ◽  
Muhammad Sohail

Aims:: This article is intended to investigate and determine combined impact of Slip and Hall current on Peristaltic transmission of Magneto-hydrodynamic (MHD) Eyring-Powell fluid. Background: The hall term arises taking strong force-field under consideration. Velocity, thermal and concentration slip conditions are applied. Energy equation is modeled by considering Joule-thermal effect. To observe non-Newtonian behavior of fluid the constitutive equations of Eyring-Powell fluid is encountered. Objective: Flow is studied in a wave frame of reference travelling with velocity of wave. The mathematical modeling is done by utilizing adequate assumptions of long wavelength and low Reynolds number. Method: The closed form solution for momentum, temperature and concentration distribution is computed analytically by using regular perturbation technique for small fluid parameter(A). Results: Graphical results are presented and discussed in detail to analyze behavior of sundry parameters on flow quantities (i.e. velocity, temperature and concentration profile). It is noticed that Powell-Eyring fluid parameters (A,B) have a significant role on the outcomes. Conclusion: The fluid parameter A magnifies the velocity profile whereas, the other fluid parameter B shows the opposite behavior.


Author(s):  
Zahoor Iqbal ◽  
Awais Ahmed ◽  
Amina Anwar ◽  
Sivanandam Sivasankaran ◽  
Ali Saleh Alshomrani ◽  
...  

In this study, the heat transport is scrutinized in the flow of magnetized Burgers fluid accelerated by stretching cylinder. Rather than, classical Fourier's and Fick's laws, the Cattaneo-Christov theory featuring the improved heat and mass conduction is utilized to investigate the energy transport. Further, the transport of thermal and solutal energy is controlled by the significant influence of heat generation/absorption and chemical reaction. The physical flow problem is modelled in the form of partial differential equations (PDEs) which are then transformed into the non-linear ordinary differential equations (ODEs) by invoking appropriate similarity variables. The numerical simulation to the system of ODE's is tackled by employing BVP-Midrich scheme in Maple. The numerical results for flow field, thermal and concentration distributions are exhibited graphically. The impact of fluid relaxation and retardation time parameters on the velocity field are observed in growing and decaying way, respectively. Both the thermal and solutal energy transport decline with higher values of retardation time parameter. The rise in Burgers fluid parameter enhances the transport of energy during the fluid motion. The effect of thermal and solutal relaxation time parameters on heat and mass transport in the fluid are noticed in the declining manner.


Author(s):  
Muhammad Naveed Khan ◽  
Rifaqat Ali ◽  
Hijaz Ahmad ◽  
Nadeem Abbas ◽  
Abd Allah A. Mousa ◽  
...  

Heat and mass transfer of the MHD flow of Casson nanofluid by an exponential stretching sheet discussed in this analysis. The MHD with joule heating effects for Casson nanofluid numerically investigated. To characterize the transport property of heat and mass, we considered the thermophoresis and Brownian effect along with thermal radiation and thermophoretic effects. Additionally, we consider the microorganism theory to analyze the suspended nanoparticles by bio-convection. The mathematical model developed on the base of boundary layer flow of casson nanofluid at exponentially stretching surface in term of partial differential equations. The partial differential equations are transformed into nonlinear ordinary differential equations by means of similarity variable transformations. The non-dimensionalized differential equations have numerically tackled by using the Bvp4c MATLAB technique. The graphical outcomes are obtained against the various parameters. Moreover, physical quantities are examined graphically and tabulating data. It is reviewed that resistance of fluid flow improves by the higher estimation of the Casson fluid parameter. Therefore, the axial and transverse velocities are reduced. Further, it is noticed from the tabulated data that more vital values of the Casson fluid parameter diminishes the skin friction and mass transfer rate but enhances the heat transfer rate.


2021 ◽  
Author(s):  
Makky Sandra Jaya ◽  
Ghazali Ahmad Riza ◽  
Ahmad Fuad M. Izzuljad ◽  
Mad Sahad Salbiah

Submitted Abstract Objectives/Scope The prediction of fluid parameter related to hydrocarbon presence using seismic data has often been limited by the performance of probability density function in estimating fluid properties from seismic inversion results. A novel fluid bulk modulus inversion (fBMI) is a pre-stack seismic inversion technique that has been developed to allow a direct estimation of pore fluid bulk modulus (Kf) from seismic data. Real data application in Malay basin showcases that Kf volume can be used to pinpoint areas with high probability of hydrocarbon presence. Methods, Procedures, Process The fluid term AVO reflectivity (Russell et al., 2011) is used as the basis of our formulation and has been extended to allow direct estimation of pore fluid bulk modulus, shearmodulus, porosity parameter and density through standard least-square inversion. The novel formulation is able to relax the dependency of fluid terms on the porosity. To demonstrate this, verifications were made against standard linear AVO approximations. Our observation shows that the young tertiary basins such as the Malay basin the fluid bulk modulus values have a big contrast between hydrocarbon saturated and water bearing reservoirs with a minimum of 60% ratio difference. The inverted fluid bulk modulus volume provides thus a direct assessment of areas with high probability of hydrocarbon saturation. Results, Observations, Conclusions In this paper, the fBMI technique is showcased on a field in the Malay basin. The outcome is demonstrated on a well panel analysis for four wells located across the study area (Figure 1). The inverted fluid bulk modulus extracted along a horizon representing the top of target reservoir is shown in Figure 2b. The blue color indicates high bulk modulus corresponds to water-bearing zone, while the yellow-red color range corresponding to low hydrocarbon-bearing zones. The areas of low fluid bulk modulus values at the north-western region are calibrated to known production zones in that region. fBMI shows areas that delineate high probability of hydrocarbon presence and provides a quantitative measure in terms of fluid parameter directly related to the presence of hydrocarbon saturations. Figure 1: Comparison analysis of water saturation (blue curve) and fluid bulk modulus (red curve) of well log data in the Malay basin. Black strips indicate the coal intervals. Figure 2: a) Inverted acoustic impedance extracted from the top reservoir horizon of a field in the Malay basin. b) The corresponding fluid bulk modulus values from fBMI. Novel/Additive Information The fBMI is a new four parameters linear amplitude-versus-offset inversion technique that provides quantitative fluid parameter directly related to fluid bulk modulus from seismic data. It is utilized as a tool for direct hydrocarbon prospect assessment to differentiate gas, oil, condensate and water.


Author(s):  
M. Naveed ◽  
Z. Abbas ◽  
M. Imran

The main objective of the present article is to provide an analytical simulation for time dependent boundary layer flow of non-Newtonian Williamson fluid due to stretchable curved oscillatory Riga surface. Also the characteristics of heat and mass transport are studied under the influence of variable thermal conductivity and diffusivity along with convective heat and mass boundary conditions. Additionally, energy equation is also characterized with the impact of heat production. Curvilinear coordinate scheme is followed to attain the boundary layer expressions for the flow model. The governing nonlinear partial differential equations are solved analytically via homotopy analysis method (HAM). Graphs are plotted to examine comprehensively the consequences of various concerned parameters like modified magnetic parameter and radius of curvature, Williamson fluid parameter, relation of the surface's oscillating frequency to its stretching rate constant, Prandtl number, variable conductivity and heat production parameters, Schmidt number and variable diffusivity parameter on concentration, temperature, pressure and velocity profile. Also the outcomes of afore said variables on surface drag force, rate of temperature and mass transmission (Nusselt and Sherwood numbers) are shown in tabular form. The liquid velocity amplitude is enhanced with modified magnetic parameter and shows opposite behavior for Williamson fluid parameter.


Fractals ◽  
2021 ◽  
Author(s):  
NADEEM AHMAD SHEIKH ◽  
DENNIS LING CHUAN CHING ◽  
HAMZAH BIN SAKIDIN ◽  
ILYAS KHAN

The enhancement of the working ability of the industrial fluid is the need of the present era; nanofluid is an emerging field in science and technology. In this study, the Brinkman-type fluid model is used and is generalized using the Fourier’s and Fick’s laws. The graphene oxide nanoparticles are dispersed in the base fluid water. The fractional partial differential equations are then solved via the Laplace and Fourier transform method. The obtained solutions for velocity, heat transfer, and mass transfer are plotted in graphs. The results show that velocity profile decreases for Brinkman-type fluid parameter and volume fraction of the nanoparticles. The plot for the fractional parameter shows that different plots can be drawn for a fixed time and other physical parameters, which is the memory effect.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Taimoor Salahuddin ◽  
Ali Haider ◽  
Metib Alghamdi

Purpose The current investigation is communicated to analyze the characteristics of squeezed second grade nanofluid flow enclosed by infinite channel in the existence of both heat generation and variable viscosity. The leading non-linear energy and momentum PDEs are converted into non-linear ODEs by using suitable analogous approach. Design/methodology/approach Then the acquired non-linear problem is numerically calculated by using Bvp4c (built in) technique in MATLAB. Findings The influence of certain appropriate physical parameters, namely, squeezed number, fluid parameter, Brownian motion, heat generation, thermophoresis parameter, Prandtl number, Schmidt number and variable viscosity parameter on temperature, velocity and concentration distributions are studied and deliberated in detail. Numerical calculations of Sherwood number, Nusselt number and skin friction for distinct estimations of appearing parameters are analyzed through graphs and tables. It is examined that for large values of squeezing parameter, the velocity profile increases, whereas opposite behavior is noticed for large values of variable viscosity and fluid parameter. Moreover, temperature profile increases for large values of Brownian motion, thermophoresis parameter and squeezed parameter and decreases by increases Prandtl number and heat generation. Moreover, concentration profile increases for large values of Brownian motion parameter and decreases by increases thermophoresis parameter, squeezed parameter and Schmidt number. Originality/value No one has ever taken infinite squeezed channel having second grade fluid model with variable viscosity and heat generation.


2021 ◽  
Vol 13 (3) ◽  
pp. 785-795
Author(s):  
U. J. Das

The main objective of this study is to investigate the effects of the Casson fluid parameter on an incompressible, magnetohydrodynamic boundary layer flow of a Casson fluid past a moving porous inclined plate in the presence of heat source and first-order chemical reaction. The governing partial differential equations are converted into ordinary differential equations using similarity transformation and then are solved numerically, adopting bv4pc method. The effects of relevant parameters on the velocity, temperature and concentration profiles are analyzed graphically. Also, tabular form is used to present skin friction, heat transfer and mass transfer. This investigation reveals that the Casson fluid parameter enhances the fluid velocity, skin friction and Sherwood number, while the Nusselt number decreases.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Maryam Asgir ◽  
A. A. Zafar ◽  
Abdullah M. Alsharif ◽  
Muhammad Bilal Riaz ◽  
Muhammad Abbas

AbstractThis research note’s objective is to elaborate on the study of the unsteady MHD natural convective flow of the Jeffery fluid with the fractional derivative model. The fluid flow phenomenon happens between two vertical parallel plates immersed in a porous medium. The one plate is moving with the time-dependent velocity $U_{0} f(t)$ U 0 f ( t ) , while the other is fixed. The mathematical model is presented with the system of the partial differential equation along with physical conditions. Appropriate dimensionless variables are employed in the system of equations, and then this dimensionless model is transformed into the Caputo fractional-order model and solved analytically by the Laplace transform. The exact expressions for velocity and temperature, which satisfy the imposed initial and boundary conditions, are obtained. Memory effects in the fluid are observed which the classical model fails to elaborate. Interesting results are revealed from the investigation of emerging parameters as Grashof number, Prandtl number, relaxation time parameter, Jeffery fluid parameter, Hartmann number, porosity, and fractional parameter. The results are elucidated with the detailed discussion and the assistance of the graphs. For the sake of validation of results, the corresponding solutions for viscous fluids are also obtained and compared with the solutions already existing in the literature.


Author(s):  
Shuang-Shuang Zhou ◽  
M. Ijaz Khan ◽  
Sumaira Qayyum ◽  
B. C. Prasannakumara ◽  
R. Naveen Kumar ◽  
...  

This investigation aims to present the thermally developed bioconvection flow of Williamson nanoliquid over an inclined stretching cylinder in presence of linear mixed convection and nonuniform heat source/sink. The activation energy and suspension of gyrotactic microorganisms are accounted with applications of bioconvection phenomenon. Appropriate nondimensional variables are opted to attain the dimensionless form of flow equations. The resulting momentum, energy, concentration and motile density equations are abridged to highly coupled and nonlinear in nature. The numerical treatment is followed for the solution procedure by employing the shooting method. The influence of some relevant dimensionless parameters is discoursed graphically along with physical justifications. Moreover, the impact of several dimensionless parameters on skin friction and Nusselt number is obtained and listed in tables. It is observed that the velocity of fluid shows a decreasing variation for Williamson fluid parameter. The change in unsteadiness parameter and heat source parameter enhanced the nanofluid temperature. The motile microorganisms profile declines with bioconvection constant and bio-convection Lewis number.


Sign in / Sign up

Export Citation Format

Share Document