scholarly journals Adaline-Based Control Schemes for Non-Sinusoidal Multiphase Drives–Part I: Torque Optimization for Healthy Mode

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8302
Author(s):  
Duc Tan Vu ◽  
Ngac Ky Nguyen ◽  
Eric Semail ◽  
Hailong Wu

More degrees of freedom not only enable multiphase drives to be fault-tolerant but also allow non-sinusoidal electromotive forces (NS-EMFs) in high-quality vector control. NS-EMFs lead to lower costs of design and manufacturing of electrical machines. However, the presence of multi-harmonics in NS-EMFs possibly generates pulsating torque in both healthy and faulty conditions of multiphase drives. To facilitate the use of NS-EMFs, this two-part study proposes control schemes to adaptively improve torque quality of multiphase drives in dealing with multi-harmonics of NS-EMFs. The proposed schemes are based on a simple but effective type of artificial intelligence, Adaptive Linear Neuron (Adaline). The knowledge of multiphase drives including the harmonic ranks of NS-EMFs and the rotor position is exploited to design the online-trained optimal Adalines. The first part of this study is to propose a control scheme using an Adaline for healthy mode with high-quality torque regardless of numerous harmonics in NS-EMFs. The second part of this study introduces a control scheme using another Adaline for open-circuit faults. The proposed schemes are numerically and experimentally validated on a seven-phase permanent magnet synchronous machine (PMSM) possessing a high total harmonic distortion (THD = 38%) of NS-EMFs.

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 249
Author(s):  
Duc Tan Vu ◽  
Ngac Ky Nguyen ◽  
Eric Semail ◽  
Hailong Wu

Fault tolerance has been known as one of the main advantages of multiphase drives. When an open-circuit fault happens, smooth torque can be obtained without any additional hardware. However, a reconfiguration strategy is required to determine new reference currents. Despite advantages of non-sinusoidal electromotive forces (NS-EMFs) such as high torque density, multi-harmonics existing in NS-EMFs cause more challenges for control, especially under faulty conditions. Therefore, to guarantee high-quality vector control of multiphase drives with multi-harmonic NS-EMFs, this two-part study proposes control schemes using adaptive linear neurons (Adalines) to adaptively eliminate torque ripples. The proposed simple Adalines are efficient because of taking advantage of the knowledge of rotor position and of torque harmonic rank induced by the NS-EMFs. The control scheme using an Adaline for healthy mode was described in part I of this study. In this second part, the control scheme using another Adaline for an open-circuit operation, under the impacts of multi-harmonics in NS-EMFs, is proposed. Notably, smooth torque and similar copper losses in the remaining healthy phases can be obtained. Experimental tests are carried out on a seven-phase permanent magnet synchronous machine (PMSM) with a high total harmonic distortion (THD = 38%) of NS-EMFs. A demonstration video is provided with this paper.


Author(s):  
Gang Shen ◽  
Zhen-Cai Zhu ◽  
Xiang Li ◽  
Qiang Meng ◽  
Yu Tang ◽  
...  

The problem of trajectory tracking for a class of nonlinear systems in the presence of un-modeled dynamics, parameter variations and even the actuator faults is investigated in this paper. A novel fault-tolerant control scheme is proposed by combining the nominal model-based controller and time-delay controller, which are adopted to achieve the real-time dynamic compensation and guarantee the robust stability of the controlled systems, respectively. Moreover, high-quality differential signals are unavailable in the presence of disturbances and measurement noise, which limit the performance of closed-loop systems in practice. Therefore, an extended state observer (ESO) is introduced to obtain high-quality differential signal estimations based on position measurements only. Furthermore, the effectiveness of the proposed novel control scheme is verified by testing in the spacecraft attitude tracking system.


2012 ◽  
Vol 588-589 ◽  
pp. 847-850
Author(s):  
Wei Jing ◽  
Ran Ding

Compared with traditional three-level neutral-point-clamped (NPC) converter, the recently proposed three-level active NPC (ANPC) converter has the ability to overcome the unbalanced loss distribution, and therefore result in increased output power or switching frequency. In industrial applications, fault tolerance ability of power converters is very important considering system availability, safety and reliability. This paper introduced the control schemes to get stable and continuous output under single device fault for both open-circuit and short-circuit fault cases. By analyzing the phase relationship of reference voltage and load current, the loss calculation method under fault tolerant operation was proposed. Calculation results show that the devices junction temperatures under fault tolerant operation are within the safe operation area (SOA) even they are a little bit higher compared to normal operation, which also confirm the effectiveness of the fault tolerant control schemes.


Author(s):  
Hichem Kesraoui ◽  
Hamdi Echeikh ◽  
Atif Iqbal ◽  
Med Faouzi Mimouni

<p>Multiphase machines have gained attention in numerous fields of pplications such as Aircraft, ship propulsion, petrochemical and automobiles, where high reliability is required. The additional number of phases guarantees that the system continues to operate in faulty conditions compared to the traditional three-phase machine due to the high degree of freedom. Among faults able to affect multiphase system, break between a machine phase and the voltage source inverter (VSI) degrade the performance of the control. In this paper, a five-phase permanent magnet synchronous machine (PMSM) is fed through a fault tolerant voltage source inverter with new structure to ensure drive continuity when open circuit occurs. The five phase PMSM is controlled with fuzzy logic regulator to minimize disturbance impact that can arise fault condition. Paper is accomplished with real time simulations using MATLAB-Simulink in order to validate the new topology and show the effectiveness of the proposed solution.</p>


The quality of power of the cascaded H-bridge multilevel inverter is affected due to harmonics. In this paper, a Selective Harmonic Elimination Pulse Width Modulation (SHE-PWM) method including controllable DC link voltage is introduced for the multilevel inverter. Novel mathematical modeling of SHE-PWM is established concerning the DC link voltage. Compared to ordinary selective harmonic elimination, the proposed method has an increased number of degrees of freedom because of its variable DC link voltage. On the other hand, the selective harmonic elimination utilizes constant DC link voltage. In the proposed scheme, the nonlinear equations are solved only once in the entire voltage range. As a result, the computational burden will decrease. Also, the Total Harmonic Distortion (THD) of the output voltage remains constant for various values of the operating points. The simulation is performed using Matlab Simulink and the comparison is performed with the conventional PWM method. It is intended that the proposed SHE-PWM based cascaded H-bridge multilevel inverter provides better performance in terms of lower-order harmonics and less THD compares to conventional PWM method.


2006 ◽  
Author(s):  
◽  
Srikanth Gururajan ◽  

This research effort describes the design and simulation of a distributed Neural Network (NN) based fault tolerant flight control scheme and the interface of the scheme within a simulation/visualization environment. The goal of the fault tolerant flight control scheme is to recover an aircraft from failures to its sensors or actuators. A commercially available simulation package, Aviator Visual Design Simulator (AVDS), was used for the purpose of simulation and visualization of the aircraft dynamics and the performance of the control schemes.;For the purpose of the sensor failure detection, identification and accommodation (SFDIA) task, it is assumed that the pitch, roll and yaw rate gyros onboard are without physical redundancy. The task is accomplished through the use of a Main Neural Network (MNN) and a set of three De-Centralized Neural Networks (DNNs), providing analytical redundancy for the pitch, roll and yaw gyros. The purpose of the MNN is to detect a sensor failure while the purpose of the DNNs is to identify the failed sensor and then to provide failure accommodation. The actuator failure detection, identification and accommodation (AFDIA) scheme also features the MNN, for detection of actuator failures, along with three Neural Network Controllers (NNCs) for providing the compensating control surface deflections to neutralize the failure induced pitching, rolling and yawing moments. All NNs continue to train on-line, in addition to an offline trained baseline network structure, using the Extended Back-Propagation Algorithm (EBPA), with the flight data provided by the AVDS simulation package.;The above mentioned adaptive flight control schemes have been traditionally implemented sequentially on a single computer. This research addresses the implementation of these fault tolerant flight control schemes on parallel and distributed computer architectures, using Berkeley Software Distribution (BSD) sockets and Message Passing Interface (MPI) for inter-process communication.


Author(s):  
Belinda Sharon Bright ◽  
R. Swarnalatha

The Proportional Integral Derivative Controller is a typical controller implemented frequently in many services and integrating the Smith predictor is an extremely useful control system structure for processes with dead time. This paper has evaluated two control schemes with the modified structures of the Smith predictor incorporating dead time compensators and conventional controllers for first order process with dead time. The disturbance response and the set point response for both the control schemes were decoupled from each other. Therefore two degrees of freedom control design was formulated, and hence the responses could be designed separately. The two control schemes have mainly two variables to be adjusted that decide the robustness and closed-loop behaviour. This paper also contains the calculation of various parameters that were used in each scheme. A comparison of the two control schemes along with the general Smith predictor control scheme was made using Simulink/Matlab. The conclusion is the second control scheme gave better response overall for the processes with dead time having dead time uncertainty and for the processes with dead time without dead time uncertainty.


Sign in / Sign up

Export Citation Format

Share Document