scholarly journals Research on the Power Capture and Wake Characteristics of a Wind Turbine Based on a Modified Actuator Line Model

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 282
Author(s):  
Feifei Xue ◽  
Heping Duan ◽  
Chang Xu ◽  
Xingxing Han ◽  
Yanqing Shangguan ◽  
...  

On a wind farm, the wake has an important impact on the performance of the wind turbines. For example, the wake of an upstream wind turbine affects the blade load and output power of the downstream wind turbine. In this paper, a modified actuator line model with blade tips, root loss, and an airfoil three-dimensional delayed stall was revised. This full-scale modified actuator line model with blades, nacelles, and towers, was combined with a Large Eddy Simulation, and then applied and validated based on an analysis of wind turbine wakes in wind farms. The modified actuator line model was verified using an experimental wind turbine. Subsequently, numerical simulations were conducted on two NREL 5 MW wind turbines with different staggered spacing to study the effect of the staggered spacing on the characteristics of wind turbines. The results show that the output power of the upstream turbine stabilized at 5.9 MW, and the output power of the downstream turbine increased. When the staggered spacing is R and 1.5R, both the power and thrust of the downstream turbine are severely reduced. However, the length of the peaks was significantly longer, which resulted in a long-term unstable power output. As the staggered spacing increased, the velocity in the central near wake of the downstream turbine also increased, and the recovery speed at the threshold of the wake slowed down. The modified actuator line model described herein can be used for the numerical simulation of wakes in wind farms.

Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3508 ◽  
Author(s):  
Andrés Guggeri ◽  
Martín Draper

As the size of wind turbines increases and their hub heights become higher, which partially explains the vertiginous increase of wind power worldwide in the last decade, the interaction of wind turbines with the atmospheric boundary layer (ABL) and between each other is becoming more complex. There are different approaches to model and compute the aerodynamic loads, and hence the power production, on wind turbines subject to ABL inflow conditions ranging from the classical Blade Element Momentum (BEM) method to Computational Fluid Dynamic (CFD) approaches. Also, modern multi-MW wind turbines have a torque controller and a collective pitch controller to manage power output, particularly in maximizing power production or when it is required to down-regulate their production. In this work the results of a validated numerical method, based on a Large Eddy Simulation-Actuator Line Model framework, was applied to simulate a real 7.7 MNW onshore wind farm on Uruguay under different wind conditions, and hence operational situations are shown with the aim to assess the capability of this approach to model actual wind farm dynamics. A description of the implementation of these controllers in the CFD solver Caffa3d, presenting the methodology applied to obtain the controller parameters, is included. For validation, the simulation results were compared with 1 Hz data obtained from the Supervisory Control and Data Acquisition System of the wind farm, focusing on the temporal evolution of the following variables: Wind velocity, rotor angular speed, pitch angle, and electric power. In addition to this, simulations applying active power control at the wind turbine level are presented under different de-rate signals, both constant and time-varying, and were subject to different wind speed profiles and wind directions where there was interaction between wind turbines and their wakes.


Author(s):  
S.-P. Breton ◽  
J. Sumner ◽  
J. N. Sørensen ◽  
K. S. Hansen ◽  
S. Sarmast ◽  
...  

Large eddy simulations (LES) of wind farms have the capability to provide valuable and detailed information about the dynamics of wind turbine wakes. For this reason, their use within the wind energy research community is on the rise, spurring the development of new models and methods. This review surveys the most common schemes available to model the rotor, atmospheric conditions and terrain effects within current state-of-the-art LES codes, of which an overview is provided. A summary of the experimental research data available for validation of LES codes within the context of single and multiple wake situations is also supplied. Some typical results for wind turbine and wind farm flows are presented to illustrate best practices for carrying out high-fidelity LES of wind farms under various atmospheric and terrain conditions. This article is part of the themed issue ‘Wind energy in complex terrains’.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4246 ◽  
Author(s):  
Guglielmo D’Amico ◽  
Giovanni Masala ◽  
Filippo Petroni ◽  
Robert Adam Sobolewski

Because of the stochastic nature of wind turbines, the output power management of wind power generation (WPG) is a fundamental challenge for the integration of wind energy systems into either power systems or microgrids (i.e., isolated systems consisting of local wind energy systems only) in operation and planning studies. In general, a wind energy system can refer to both one wind farm consisting of a number of wind turbines and a given number of wind farms sited at the area in question. In power systems (microgrid) planning, a WPG should be quantified for the determination of the expected power flows and the analysis of the adequacy of power generation. Concerning this operation, the WPG should be incorporated into an optimal operation decision process, as well as unit commitment and economic dispatch studies. In both cases, the probabilistic investigation of WPG leads to a multivariate uncertainty analysis problem involving correlated random variables (the output power of either wind turbines that constitute wind farm or wind farms sited at the area in question) that follow different distributions. This paper advances a multivariate model of WPG for a wind farm that relies on indexed semi-Markov chains (ISMC) to represent the output power of each wind energy system in question and a copula function to reproduce the spatial dependencies of the energy systems’ output power. The ISMC model can reproduce long-term memory effects in the temporal dependence of turbine power and thus understand, as distinct cases, the plethora of Markovian models. Using copula theory, we incorporate non-linear spatial dependencies into the model that go beyond linear correlations. Some copula functions that are frequently used in applications are taken into consideration in the paper; i.e., Gumbel copula, Gaussian copula, and the t-Student copula with different degrees of freedom. As a case study, we analyze a real dataset of the output powers of six wind turbines that constitute a wind farm situated in Poland. This dataset is compared with the synthetic data generated by the model thorough the calculation of three adequacy indices commonly used at the first hierarchical level of power system reliability studies; i.e., loss of load probability (LOLP), loss of load hours (LOLH) and loss of load expectation (LOLE). The results will be compared with those obtained using other models that are well known in the econometric field; i.e., vector autoregressive models (VAR).


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 882 ◽  
Author(s):  
Hongyan Ding ◽  
Zuntao Feng ◽  
Puyang Zhang ◽  
Conghuan Le ◽  
Yaohua Guo

The composite bucket foundation (CBF) for offshore wind turbines is the basis for a one-step integrated transportation and installation technique, which can be adapted to the construction and development needs of offshore wind farms due to its special structural form. To transport and install bucket foundations together with the upper portion of offshore wind turbines, a non-self-propelled integrated transportation and installation vessel was designed. In this paper, as the first stage of applying the proposed one-step integrated construction technique, the floating behavior during the transportation of CBF with a wind turbine tower for the Xiangshui wind farm in the Jiangsu province was monitored. The influences of speed, wave height, and wind on the floating behavior of the structure were studied. The results show that the roll and pitch angles remain close to level during the process of lifting and towing the wind turbine structure. In addition, the safety of the aircushion structure of the CBF was verified by analyzing the measurement results for the interaction force and the depth of the liquid within the bucket. The results of the three-DOF (degree of freedom) acceleration monitoring on the top of the test tower indicate that the wind turbine could meet the specified acceleration value limits during towing.


Author(s):  
Paul Sclavounos ◽  
Christopher Tracy ◽  
Sungho Lee

Wind is the fastest growing renewable energy source, increasing at an annual rate of 25% with a worldwide installed capacity of 74 GW in 2007. The vast majority of wind power is generated from onshore wind farms. Their growth is however limited by the lack of inexpensive land near major population centers and the visual pollution caused by large wind turbines. Wind energy generated from offshore wind farms is the next frontier. Large sea areas with stronger and steadier winds are available for wind farm development and 5MW wind turbine towers located 20 miles from the coastline are invisible. Current offshore wind turbines are supported by monopoles driven into the seafloor at coastal sites a few miles from shore and in water depths of 10–15m. The primary impediment to their growth is visual pollution and the prohibitive cost of seafloor mounted monopoles in larger water depths. This paper presents a fully coupled dynamic analysis of floating wind turbines that enables a parametric design study of floating wind turbine concepts and mooring systems. Pareto optimal designs are presented that possess a favorable combination of nacelle acceleration, mooring system tension and displacement of the floating structure supporting a five megawatt wind turbine. All concepts are selected so that they float stably while in tow to the offshore wind farm site and prior to their connection to the mooring system. A fully coupled dynamic analysis is carried out of the wind turbine, floater and mooring system in wind and a sea state based on standard computer programs used by the offshore and wind industries. The results of the parametric study are designs that show Pareto fronts for mean square acceleration of the turbine versus key cost drivers for the offshore structure that include the weight of the floating structure and the static plus dynamic mooring line tension. Pareto optimal structures are generally either a narrow deep drafted spar, or a shallow drafted barge ballasted with concrete. The mooring systems include both tension leg and catenary mooring systems. In some of the designs, the RMS acceleration of the wind turbine nacelle can be as low as 0.03 g in a sea state with a significant wave height of ten meters and water depths of up to 200 meters. These structures meet design requirements while possessing a favorable combination of nacelle accleration, total mooring system tension and weight of the floating structure. Their economic assessment is also discussed drawing upon a recent financial analysis of a proposed offshore wind farm.


2013 ◽  
Vol 715 ◽  
pp. 335-358 ◽  
Author(s):  
Johan Meyers ◽  
Charles Meneveau

AbstractAs a generalization of the mass–flux based classical stream tube, the concept of momentum and energy transport tubes is discussed as a flow visualization tool. These transport tubes have the property that no fluxes of momentum or energy exist over their respective tube mantles. As an example application using data from large eddy simulation, such tubes are visualized for the mean-flow structure of turbulent flow in large wind farms, in fully developed wind-turbine-array boundary layers. The three-dimensional organization of energy transport tubes changes considerably when turbine spacings are varied, enabling the visualization of the path taken by the kinetic energy flux that is ultimately available at any given turbine within the array.


Sign in / Sign up

Export Citation Format

Share Document