scholarly journals A Multi-Scale Numerical Model for Investigation of Flame Dynamics in a Thermal Flow Reversal Reactor

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 318
Author(s):  
Jia Li ◽  
Ming-Ming Mao ◽  
Min Gao ◽  
Qiang Chen ◽  
Jun-Rui Shi ◽  
...  

In this paper, the flame dynamics in a thermal flow reversal reactor are studied using a multi-scale model. The challenges of the multi-scale models lie in the data exchanges between different scale models and the capture of the flame movement of the filtered combustion by the pore-scale model. Through the multi-scale method, the computational region of the porous media is divided into the inlet preheating zone, reaction zone, and outlet exhaust zone. The three models corresponding to the three zones are calculated by volume average method, pore-scale method, and volume average method respectively. Temperature distribution is used as data for real-time exchange. The results show that the multi-scale model can save computation time when compared with the pore-scale model. Compared with the volumetric average model, the multi-scale model can capture the flame front and predict the flame propagation more accurately. The flame propagation velocity increases and the flame thickness decreases with the increase of inlet flow rates and mixture concentration. In addition, the peak value of the initial temperature field and the width of the high-temperature zone also affect the flame propagation velocity and flame thickness.

Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2454
Author(s):  
Yue Sun ◽  
Yanze Yu ◽  
Jinhao Guo ◽  
Minghai Zhang

Single-scale frameworks are often used to analyze the habitat selections of species. Research on habitat selection can be significantly improved using multi-scale models that enable greater in-depth analyses of the scale dependence between species and specific environmental factors. In this study, the winter habitat selection of red deer in the Gogostaihanwula Nature Reserve, Inner Mongolia, was studied using a multi-scale model. Each selected covariate was included in multi-scale models at their “characteristic scale”, and we used an all subsets approach and model selection framework to assess habitat selection. The results showed that: (1) Univariate logistic regression analysis showed that the response scale of red deer to environmental factors was different among different covariate. The optimal scale of the single covariate was 800–3200 m, slope (SLP), altitude (ELE), and ratio of deciduous broad-leaved forests were 800 m in large scale, except that the farmland ratio was 200 m in fine scale. The optimal scale of road density and grassland ratio is both 1600 m, and the optimal scale of net forest production capacity is 3200 m; (2) distance to forest edges, distance to cement roads, distance to villages, altitude, distance to all road, and slope of the region were the most important factors affecting winter habitat selection. The outcomes of this study indicate that future studies on the effectiveness of habitat selections will benefit from multi-scale models. In addition to increasing interpretive and predictive capabilities, multi-scale habitat selection models enhance our understanding of how species respond to their environments and contribute to the formulation of effective conservation and management strategies for ungulata.


2009 ◽  
Author(s):  
William J. Likos ◽  
Masami Nakagawa ◽  
Stefan Luding

2014 ◽  
Vol 161 (8) ◽  
pp. E3235-E3247 ◽  
Author(s):  
Akos Kriston ◽  
Andreas Pfrang ◽  
Branko N. Popov ◽  
L. Boon-Brett

SPE Journal ◽  
2009 ◽  
Vol 14 (04) ◽  
pp. 579-587 ◽  
Author(s):  
Matthew T. Balhoff ◽  
Mary F. Wheeler

Sign in / Sign up

Export Citation Format

Share Document