scholarly journals Enhancement of Sensorless Control for Non-Sinusoidal Multiphase Drives-Part I: Operation in Medium and High-Speed Range

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 607
Author(s):  
Youssouf Mini ◽  
Ngac Ky Nguyen ◽  
Eric Semail ◽  
Duc Tan Vu

This two-part study proposes a new sensorless control strategy for non-sinusoidal multiphase permanent magnet synchronous machines (PMSMs), especially integrated motor drives (IMDs). Based on the Sliding Mode Observer (SMO), the proposed sensorless control strategy uses the signals (currents and voltages) of all fictitious machines of the multiphase PMSMs. It can estimate the high-accuracy rotor positions that are required in vector control. This proposed strategy is compared to the conventional sensorless control strategy that applies only current and voltage signals of the main fictitious machine, including the fundamental component of back electromotive force (back EMF) of non-sinusoidal multiphase PMSMs. Therefore, in order to choose an appropriate sensorless control strategy for the non-sinusoidal multiphase PMSMs, these two sensorless control strategies will be highlighted in terms of precision with respect to rotor position and speed estimation. Simulations and the experimental results obtained with a non-sinusoidal seven-phase PMSM will be shown to verify and compare the two sensorless control strategies. In this part of the study (part I), only sensorless control in the medium and high-speed range is considered. Sensorless control at the zero and low-speed range will be treated in the second part of this study (part II).

2021 ◽  
Vol 261 ◽  
pp. 01010
Author(s):  
Siyuan Ma ◽  
Xiang Yu ◽  
Yunjun Guo ◽  
Rong Ran

UAV (Unmanned Aerial Vehicle) has broad application prospects in various fields. In order to meet the needs of stability and efficiency during flight, a surface-mounted permanent magnet synchronous motor is used as its rotor motor, and a position sensorless control technology is used to control the rotor motor with high efficiency and high dynamic response. This paper proposes a position sensorless control strategy in the full speed range for the actual application requirements of UAV. In low speed ange, I/F control strategy with speed-open-loop and current-closed-loop is. In medium and high speed range, a sliding mode observer is adopted to provide estimated rotor position and speed. To achieve smooth switching from I/F control stage to speed closed-loop stage, a switching algorithm is proposed. The feasibility of the proposed hybrid control strategy is verified by simulation results.


Author(s):  
Ye Yuan ◽  
Douglas Thomson ◽  
Renliang Chen

The coaxial compound configuration has been proposed as a concept for future high-performance rotorcraft. The co-axial rotor system does not require an anti-torque device, and a propeller provides axial thrust. A well-designed control strategy for the propeller is necessary to improve the performance and the flight dynamics characteristics. A flight dynamics model of coaxial compound helicopter is developed to analyze these influences. The performance and the flight dynamics characteristics in different propeller strategies were first investigated. The results show that there is an improvement in the performance in high-speed flight when the propeller provides more propulsive forces. It also illustrates that a reasonable allocation of the rotor and the propeller in providing thrust can further reduce the power consumption in the mid speed range. In other words, the propeller control strategy can be an effective method to improve the cruise-efficiency. The flight dynamics analysis in this paper includes trim and handling qualities. The trim results prove that the propeller strategy can affect the collective pitch, longitudinal cyclic pitch, and the pitch attitude. If the control strategy is designed only to decrease the required power, it will result in a discontinuity in the trim characteristics. Handling qualities are investigated based on the ADS-33E-PRF requirement. The result demonstrates that the bandwidth and phase delay results and eigenvalue results in various speed at different propeller strategies are all satisfied. However, some propeller control strategies lead to severe inter-axis coupling in high-speed flight. Based on these results, this paper proposes the propeller control strategy for the coaxial compound helicopter. This strategy ensures good trim characteristics and handling qualities, which satisfy the related requirements, and improves the flight range or the performance in high-speed flight.


Sign in / Sign up

Export Citation Format

Share Document