scholarly journals Decentralized and Real-Time Power Dispatch Control for an Islanded Microgrid Supported by Distributed Power Sources

Energies ◽  
2013 ◽  
Vol 6 (12) ◽  
pp. 6439-6454 ◽  
Author(s):  
Changsun Ahn ◽  
Huei Peng
Processes ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 193 ◽  
Author(s):  
Liu ◽  
Wang ◽  
Wang

At present, some achievements have been made in the research on the energy management of microgrid operation. However, the research is mainly on the operation of grid-connected microgrid, while the research on the energy management of islanded microgrid is still relatively few. Frequency is one of the characteristics that affects the reliability and power quality of the microgrid. The essence of controlling frequency stability is to maintain source-load balance and redistribution of active power. Therefore, this paper proposes a frequency control strategy based on dynamically cutting machine to reduce load by analyzing the use priority of different distributed power supply and the division of load importance degree, and combining the influence degree of different frequency variation range on microgrid. To coordinate and control distributed power supply, energy storage device, and load in different frequency change areas, this paper proposes different control strategies. The seed strategies of the control strategy are discussed one by one. Experimental results show that the frequency control strategy can significantly improve the frequency stability of the power supply system and reduce the operating cost of islanded microgrid.


Author(s):  
Xin Shen ◽  
Hongchun Shu ◽  
Min Cao ◽  
Nan Pan ◽  
Junbin Qian

In distribution networks with distributed power supplies, distributed power supplies can also be used as backup power sources to support the grid. If a distribution network contains multiple distributed power sources, the distribution network becomes a complex power grid with multiple power supplies. When a short-circuit fault occurs at a certain point on the power distribution network, the size, direction and duration of the short-circuit current are no longer single due to the existence of distributed power, and will vary with the location and capacity of the distributed power supply system. The change, in turn, affects the current in the grid, resulting in the generation and propagation of additional current. This power grid of power electronics will cause problems such as excessive standard mis-operation, abnormal heating of the converter and component burnout, and communication system failure. It is of great and practical significance to study the influence of distributed power in distributed power distribution networks.


Fuel Cells ◽  
2018 ◽  
Vol 18 (6) ◽  
pp. 809-823 ◽  
Author(s):  
N. Bizon ◽  
G. Iana ◽  
E. Kurt ◽  
P. Thounthong ◽  
M. Oproescu ◽  
...  

2019 ◽  
Vol 8 (2S11) ◽  
pp. 2542-2550

In this modern epoch Sustainable Energy Resources (SER) takes an upper hand in meeting the rise in power demand. Over the last few years, the increasing electrical power demand has prompted an incredible need for power from sustainable energy sources. The irradiation from solar, wind turbines are pondered as the main source of power generation since they supplement one another. For the general development of the economy, it is important that the agro-based economy would lead to the growth of the country. It is neither achievable nor affordable to dispatch power in the far away locales for a scarcely populated town. In this paper, the supplanting of energy sources with the sustainable power sources utilizing HOMER programming is performed. An independent sustainable power sources (ISPS) is used to meet the load and the cost is evaluated. The work is performed for real time data under different schemes like PV, wind and its combination. The optimization of operating cost under two scenario of using the ISPS (either PV or Wind) and using both PV & wind for real-time input taken from Sicud village in Philippines and Laboratory load data of SRMIST in India is performed. The comparison of the operating cost for the two region under two cases is executed and analyzed.


Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 679 ◽  
Author(s):  
Xingli ◽  
Ning

Islanded multi-microgrids formed by interconnections of microgrids will be conducive to the improvement of system economic efficiency and supply reliability. Due to the lack of support from a main grid, the requirement of real-time power balance of the islanded multi-microgrid is relatively high. In order to solve real-time dispatch problems in an island multi-microgrid system, a real-time cooperative power dispatch framework is proposed by using the multi-agent consensus algorithm. On this basis, a regulation cost model for the microgrid is developed. Then a consensus algorithm of power dispatch is designed by selecting the regulation cost of each microgrid as the consensus variable to make all microgrids share the power unbalance, thus reducing the total regulation cost. Simulation results show that the proposed consensus algorithm can effectively solve the real-time power dispatch problem for islanded multi-microgrids.


Author(s):  
Ezral Baharudin ◽  
Jarkko Nokka ◽  
Henri Montonen ◽  
Paula Immonen ◽  
Asko Rouvinen ◽  
...  

The interest in using hybrid technology in Non-Road Mobile Machinery (NRMM) has increased significantly in the late 2000s due to tightening emission regulations (Tier 4). In general, utilization of hybrid technology can simplify the vehicle driveline compared to conventional mechanical and hydraulic power transmissions. On the other hand, hybrid technology and its different driving modes and multiple power sources creates new challenges in the design process. Many industries have used co-simulation and virtual prototyping approaches successfully as a development and diagnostic tool. However, it is still rarely used in the design of hybrid mobile machines. This is due to the fact, that the computer analysis of a mobile machine is a multidisciplinary task which requires a deep knowledge in several engineering areas. In this paper, a novel real-time co-simulation platform is presented that couples multi-body dynamics based physics modelling and Matlab/Simulink–based hybrid driveline modelling. The presented approach enables a fast and accurate virtual prototyping tool to calculate dimension hybrid driveline components and test various hybridization concepts.


Sign in / Sign up

Export Citation Format

Share Document