scholarly journals Holistic Assessment of Carbon Capture and Utilization Value Chains

Environments ◽  
2018 ◽  
Vol 5 (10) ◽  
pp. 108 ◽  
Author(s):  
Tryfonas Pieri ◽  
Alexandros Nikitas ◽  
Arturo Castillo-Castillo ◽  
Athanasios Angelis-Dimakis

Carbon capture and utilization (CCU) is recognized by the European Union, along with carbon, capture and storage (CCS), as one of the main tools towards global warming mitigation. It has, thus, been extensively studied by various researchers around the world. The majority of the papers published so far focus on the individual stages of a CCU value chain (carbon capture, separation, purification, transportation, and transformation/utilization). However, a holistic approach, taking into account the matching and the interaction between these stages, is also necessary in order to optimize and develop technically and economically feasible CCU value chains. The objective of this contribution is to present the most important studies that are related to the individual stages of CCU and to perform a critical review of the major existing methods, algorithms and tools that focus on the simulation or optimization of CCU value chains. The key research gaps will be identified and examined in order to lay the foundation for the development of a methodology towards the holistic assessment of CCU value chains.

2007 ◽  
Vol 4 (5) ◽  
pp. 343-352 ◽  
Author(s):  
Andrew J. Gibbons ◽  
Elizabeth JI. Wilson

AbstractCarbon capture and storage could play an important role as a near-term bridging technology, enabling deep reductions from greenhouse gas emissions while still allowing use of inexpensive fossil fuels. However, filling this technological promise requires resolution of key regulatory and legal uncertainties surrounding both human and ecological health, integration within a larger climate policy, and clear assignment of responsibility and liability for long-term care. Deployment of CCS projects in the European Union (E.U.) and the United States (U.S.) may be technologically similar, but will be contextually different. In this paper, we explore the existing energy, policy, regulatory and legal climates that will necessitate different approaches for deployment. The high U.S. dependence on coal makes CCS very important if the U.S. is to achieve deep emissions reductions, while in the E.U. an established climate policy, the importance of off shore projects, and a supportive political climate are favorable to CCS deployment. Additionally, in Europe, regulators must clarify the classification of CO2 within E.U. and international regulations governing on and offshore projects, whereas in the U.S. subsurface property rights, abandoned wells, and state-level jurisdictional difference will play important roles.


Author(s):  
Michael Green

Underground coal gasification is a conversion and extraction process, for the production of useful synthetic product gas from an in-situ coal seam, to use in power generation, heat production or as a chemical feedstock. While many variants of the underground coal gasification process have been considered and over 75 trials performed throughout the world, the recent work has tended to focus on the control of the process, its environmental impact on underground and surface conditions and its potential for carbon capture and storage. Academic research has produced a set of mathematical models of underground coal gasification, and the European Union-supported programme has addressed the production of a decarbonised product gas for carbon capture and storage. In recent years, significant progress has been made into the modelling of tar formation, spalling, flows within the cavity and the control of minor gasification components, like BTEX and phenols, from underground coal gasification cavities (BTEX refers to the chemicals benzene, toluene, ethylbenzene and xylene). The paper reviews the most recent underground coal gasification field trial and modelling experience and refers to the pubic concern and caution by regulators that arise when a commercial or pilot-scale project seeks approval. It will propose solutions for the next generation of underground coal gasification projects. These include the need to access deeper coal seams and the use of new techniques for modelling the process.


2021 ◽  
Author(s):  
Shuhua Chang ◽  
Yu Li ◽  
Yanqin Chang

Abstract We build a continuous-time stochastic real options model to study the abandonment strategy of carbon capture and storage (CCS) project. Based on the stochastic optimal control theory, we solve the problem with the Hamilton-Jacobi-Bellman variational inequality (HJBVI) to derive the evolution of the optimal CCS investment over time. Using optimal stopping time, we establish a free boundary for each time node over the entire CCS construction stage as a function of the market carbon price and the individual project's remaining total deployment investment. The boundary is to help the investors decide whether to keep investing or abandon the project. Numerical simulations based on Chinese data are conducted by applying the finite element method with the power penalty. Concerning a hypothetical CCS project with a remaining total deployment investment of 10 billion RMB, our projected critical carbon prices relevant to its decisions on CCS project in 2020 are, respectively, 137.27 RMB/ton CO2 (0.123 RMB/kW·h) and 104.14 RMB/ton CO2 (0.093 RMB/kW·h). Being well below either threshold, if the current price prevails in 2020, the private investors will have no incentive to keep investing in or operate the above CCS project. It seems to us that this should indicate the exact right moment for the government to consider subsidizing them with at least the amount of money to prevent their abandonment of CCS from happening.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2319 ◽  
Author(s):  
Peter Viebahn ◽  
Emile Chappin

For many years, carbon capture and storage (CCS) has been discussed as a technology that may make a significant contribution to achieving major reductions in greenhouse gas emissions. At present, however, only two large-scale power plants capture a total of 2.4 Mt CO2/a. Several reasons are identified for this mismatch between expectations and realised deployment. Applying bibliographic coupling, the research front of CCS, understood to be published peer-reviewed papers, is explored to scrutinise whether the current research is sufficient to meet these problems. The analysis reveals that research is dominated by technical research (69%). Only 31% of papers address non-technical issues, particularly exploring public perception, policy, and regulation, providing a broader view on CCS implementation on the regional or national level, or using assessment frameworks. This shows that the research is advancing and attempting to meet the outlined problems, which are mainly non-technology related. In addition to strengthening this research, the proportion of papers that adopt a holistic approach may be increased in a bid to meet the challenges involved in transforming a complex energy system. It may also be useful to include a broad variety of stakeholders in research so as to provide a more resilient development of CCS deployment strategies.


2020 ◽  
Vol 12 (15) ◽  
pp. 6175 ◽  
Author(s):  
Bong Jae Lee ◽  
Jeong Il Lee ◽  
Soo Young Yun ◽  
Cheol-Soo Lim ◽  
Young-Kwon Park

Based on the operating data of a 40 tCO2/day (2 megawatt (MW)) class carbon capture and utilization (CCU) pilot plant, the scaled-up 400 tCO2/day (20 MW) class CCU plant at 500 MW power plant was economically analyzed by applying the levelized cost of energy analysis (LCOE) and CO2 avoided cost. This study shows that the LCOE and CO2 avoided cost for 400 tCO2/day class CCU plant of mineral carbonation technology were 26 USD/MWh and 64 USD/tCO2, representing low LCOE and CO2 avoided cost, compared to other carbon capture and storage CCS and CCU plants. Based on the results of this study, the LCOE and CO2 avoided cost may become lower by the economy of scale, even if the CO2 treatment capacity of the CCU plant could be extended as much as for similar businesses. Therefore, the CCU technology by mineral carbonation has an economic advantage in energy penalty, power plant construction, and operating cost over other CCS and CCU with other technology.


2021 ◽  
Vol 3 ◽  
Author(s):  
Wilfried Rickels ◽  
Alexander Proelß ◽  
Oliver Geden ◽  
Julian Burhenne ◽  
Mathias Fridahl

In one of the central scenarios for meeting an European Union-wide net zero greenhouse gas (GHG) emissions target by 2050, the emissions cap in the European Union Emissions Trading System (EU ETS) becomes net negative. Despite this ambition, no mechanism allows for the inclusion of CO2 removal credits (CRCs) in the EU ETS to date. Amending the EU ETS legislation is required to create enabling conditions for a net negative cap. Here, we conceptually discuss various economic, legal, and political challenges surrounding the integration of CRCs into the EU ETS. To analyze cap-and-trade systems encompassing negative emissions, we introduce the effective (elastic) cap resulting from the integration of CRCs in addition to the regulatory (inelastic) cap, the latter now being binding for the net emissions only. Given current cost estimates for BECCS and DACCS, minimum quantities for the use of removals, as opposed to ceilings as currently discussed, would be required to promote the near-term integration of such technologies. Instead of direct interaction between the companies involved in emissions trading and the providers of CRCs, the regulatory authority could also transitionally act as an intermediary by buying CRCs and supplying them in turn conditional upon observed allowances prices, for example, by supporting a (soft) price collar. Contrary to a price collar without dedicated support from CRCs, in this case (net) compliance with the overall cap is maintained. EU legislation already provides safeguards for physical carbon leakage concerning CCS, making Bioenergy with Carbon Capture and Storage (BECCS) and Direct Air Capture and Storage prioritized for inclusion in the EU ETS. Furthermore, a special opportunity might apply for the inclusion of BECCS installations. Repealing the provision that installations exclusively using biomass are not covered by the ETS Directive, combined with freely allocated allowances to these installations, would allow operators of biomass installations to sell allowances made available through the use of BECCS. Achieving GHG neutrality in the EU by 2050 requires designing suitable incentive systems for CO2 removal, which includes the option to open up EU emissions trading to CRCs.


Author(s):  
Richard Macrory

The capture and long-term storage of carbon dioxide from power plants and other industrial installations may prove a key technology in climate change abatement strategies. Regulatory frameworks for carbon capture and storage (CCS) are now being developed in a number of jurisdictions. The European Union produced the first comprehensive legislation on the subject in 2009, which provides a compelling example of challenges associated with the design of regulation dealing with a novel technology. This chapter identifies three issues, each of which reflects aspects of regulatory legitimacy: the extent to which states within a federal or quasi-federal system should have the legal discretion to reject a technology; the way in which regulation provides for opportunities for public participation and engagement in issues concerning the new technology; and whether, and at what point, the state should assume responsibility for storage sites, given the long timescales necessary for secure storage.


Sign in / Sign up

Export Citation Format

Share Document