scholarly journals Landsat 8 Based Leaf Area Index Estimation in Loblolly Pine Plantations

Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 222 ◽  
Author(s):  
Christine Blinn ◽  
Matthew House ◽  
Randolph Wynne ◽  
Valerie Thomas ◽  
Thomas Fox ◽  
...  

Leaf area index (LAI) is an important biophysical parameter used to monitor, model, and manage loblolly pine plantations across the southeastern United States. Landsat provides forest scientists and managers the ability to obtain accurate and timely LAI estimates. The objective of this study was to investigate the relationship between loblolly pine LAI measured in situ (at both leaf area minimum and maximum through two growing seasons at two geographically disparate study areas) and vegetation indices calculated using data from Landsat 7 (ETM+) and Landsat 8 (OLI). Sub-objectives included examination of the impact of georegistration accuracy, comparison of top-of-atmosphere and surface reflectance, development of a new empirical model for the species and region, and comparison of the new empirical model with the current operational standard. Permanent plots for the collection of ground LAI measurements were established at two locations near Appomattox, Virginia and Tuscaloosa, Alabama in 2013 and 2014, respectively. Each plot is thirty by thirty meters in size and is located at least thirty meters from a stand boundary. Plot LAI measurements were collected twice a year using the LI-COR LAI-2200 Plant Canopy Analyzer. Ground measurements were used as dependent variables in ordinary least squares regressions with ETM+ and OLI-derived vegetation indices. We conclude that accurately-located ground LAI estimates at minimum and maximum LAI in loblolly pine stands can be combined and modeled with Landsat-derived vegetation indices using surface reflectance, particularly simple ratio (SR) and normalized difference moisture index (NDMI), across sites and sensors. The best resulting model (LAI = −0.00212 + 0.3329SR) appears not to saturate through an LAI of 5 and is an improvement over the current operational standard for loblolly pine monitoring, modeling, and management in this ecologically and economically important region.

2021 ◽  
Vol 13 (6) ◽  
pp. 1140
Author(s):  
Stephen M. Kinane ◽  
Cristian R. Montes ◽  
Timothy J. Albaugh ◽  
Deepak R. Mishra

Vegetation indices calculated from remotely sensed satellite imagery are commonly used within empirically derived models to estimate leaf area index in loblolly pine plantations in the southeastern United States. The data used to parameterize the models typically come with observation errors, resulting in biased parameters. The objective of this study was to quantify and reduce the effects of observation errors on a leaf area index (LAI) estimation model using imagery from Landsat 5 TM and 7 ETM+ and over 1500 multitemporal measurements from a Li-Cor 2000 Plant Canopy Analyzer. Study data comes from a 16 quarter 1 ha plot with 1667 trees per hectare (2 m × 3 m spacing) fertilization and irrigation research site with re-measurements taken between 1992 and 2004. Using error-in-variable methods, we evaluated multiple vegetation indices, calculated errors associated with their observations, and corrected for them in the modeling process. We found that the normalized difference moisture index provided the best correlation with below canopy LAI measurements (76.4%). A nonlinear model that accounts for the nutritional status of the stand was found to provide the best estimates of LAI, with a root mean square error of 0.418. The analysis in this research provides a more extensive evaluation of common vegetation indices used to estimate LAI in loblolly pine plantations and a modeling framework that extends beyond the typical linear model. The proposed model provides a simple to use form allowing forest practitioners to evaluate LAI development and its uncertainty in historic pine plantations in a spatial and temporal context.


2020 ◽  
Vol 12 (19) ◽  
pp. 3121
Author(s):  
Roya Mourad ◽  
Hadi Jaafar ◽  
Martha Anderson ◽  
Feng Gao

Leaf area index (LAI) is an essential indicator of crop development and growth. For many agricultural applications, satellite-based LAI estimates at the farm-level often require near-daily imagery at medium to high spatial resolution. The combination of data from different ongoing satellite missions, Sentinel 2 (ESA) and Landsat 8 (NASA), provides this opportunity. In this study, we evaluated the leaf area index generated from three methods, namely, existing vegetation index (VI) relationships applied to Harmonized Landsat-8 and Sentinel-2 (HLS) surface reflectance produced by NASA, the SNAP biophysical model, and the THEIA L2A surface reflectance products from Sentinel-2. The intercomparison was conducted over the agricultural scheme in Bekaa (Lebanon) using a large set of in-field LAIs and other biophysical measurements collected in a wide variety of canopy structures during the 2018 and 2019 growing seasons. The major studied crops include herbs (e.g., cannabis: Cannabis sativa, mint: Mentha, and others), potato (Solanum tuberosum), and vegetables (e.g., bean: Phaseolus vulgaris, cabbage: Brassica oleracea, carrot: Daucus carota subsp. sativus, and others). Additionally, crop-specific height and above-ground biomass relationships with LAIs were investigated. Results show that of the empirical VI relationships tested, the EVI2-based HLS models statistically performed the best, specifically, the LAI models originally developed for wheat (RMSE:1.27), maize (RMSE:1.34), and row crops (RMSE:1.38). LAI derived through European Space Agency’s (ESA) Sentinel Application Platform (SNAP) biophysical processor underestimated LAI and provided less accurate estimates (RMSE of 1.72). Additionally, the S2 SeLI LAI algorithm (from SNAP biophysical processor) produced an acceptable accuracy level compared to HLS-EVI2 models (RMSE of 1.38) but with significant underestimation at high LAI values. Our findings show that the LAI-VI relationship, in general, is crop-specific with both linear and non-linear regression forms. Among the examined indices, EVI2 outperformed other vegetation indices when all crops were combined, and therefore it can be identified as an index that is best suited for a unified algorithm for crops in semi-arid irrigated regions with heterogeneous landscapes. Furthermore, our analysis shows that the observed height-LAI relationship is crop-specific and essentially linear with an R2 value of 0.82 for potato, 0.79 for wheat, and 0.50 for both cannabis and tobacco. The ability of the linear regression to estimate the fresh and dry above-ground biomass of potato from both observed height and LAI was reasonable, yielding R2: ~0.60.


2021 ◽  
Vol 13 (15) ◽  
pp. 2879
Author(s):  
Lida Andalibi ◽  
Ardavan Ghorbani ◽  
Mehdi Moameri ◽  
Zeinab Hazbavi ◽  
Arne Nothdurft ◽  
...  

The leaf area index (LAI) is an important vegetation biophysical index that provides broad information on the dynamic behavior of an ecosystem’s productivity and related climate, topography, and edaphic impacts. The spatiotemporal changes of LAI were assessed throughout Ardabil Province—a host of relevant plant communities within the critical ecoregion of a semi-arid climate. In a comparative study, novel data from Google Earth Engine (GEE) was tested against traditional ENVI measures to provide LAI estimations. Moreover, it is of important practical significance for institutional networks to quantitatively and accurately estimate LAI, at large areas in a short time, and using appropriate baseline vegetation indices. Therefore, LAI was characterized for ecoregions of Ardabil Province using remote sensing indices extracted from Landsat 8 Operational Land Imager (OLI), including the Enhanced Vegetation Index calculated in GEE (EVIG) and ENVI5.3 software (EVIE), as well as the Normalized Difference Vegetation Index estimated in ENVI5.3 software (NDVIE). Moreover, a new field measurement method, i.e., the LaiPen LP 100 portable device (LP 100), was used to evaluate the accuracy of the derived indices. Accordingly, the LAI was measured in June and July 2020, in 822 ground points distributed in 16 different ecoregions-sub ecoregions having various plant functional types (PFTs) of the shrub, bush, and tree. The analyses revealed heterogeneous spatial and temporal variability in vegetation indices and LAIs within and between ecoregions. The mean (standard deviation) value of EVIG, EVIE, and NDVIE at a province scale yielded 1.1 (0.41), 2.20 (0.78), and 3.00 (1.01), respectively in June, and 0.67 (0.37), 0.80 (0.63), and 1.88 (1.23), respectively, in July. The highest mean values of EVIG-LAI, EVIE-LAI, and NDVIE-LAI in June are found in Meshginshahr (1.40), Meshginshahr (2.80), and Hir (4.33) ecoregions and in July are found in Andabil ecoregion respectively with values of 1.23, 1.5, and 3.64. The lowest mean values of EVIG-LAI, EVIE-LAI, and NDVIE-LAI in June were observed for Kowsar (0.67), Meshginshahr (1.8), and Neur (2.70) ecoregions, and in July, the Bilesavar ecoregion, respectively, with values of 0.31, 0.31, and 0.81. High correlation and determination coefficients (r > 0.83 and R2 > 0.68) between LP 100 and remote sensing derived LAI were observed in all three PFTs (except for NDVIE-LAI in June with r = 0.56 and R2 = 0.31). On average, all three examined LAI measures tended to underestimate compared to LP 100-LAI (r > 0.42). The findings of the present study could be promising for effective monitoring and proper management of vegetation and land use in the Ardabil Province and other similar areas.


2010 ◽  
Vol 34 (4) ◽  
pp. 154-160 ◽  
Author(s):  
Alicia Peduzzi ◽  
H. Lee Allen ◽  
Randolph H. Wynne

Abstract Leaf area index (LAI) was measured in summer and winter for the overstory and understory in 7- and 10-year-old loblolly and slash pine plantations on poorly drained, somewhat poorly drained, and moderately well-drained soils. LAI and vegetation indices (simple ratio [SR], normalized difference vegetation index [NDVI], vegetation index, and enhanced vegetation index) were also calculated using Landsat imagery. LAI values observed for the overstory were low in most of the plots (around 2 m2 m−2 in slash pine and around 3 m2 m−2 in loblolly pine), whereas the understory LAI was very high (around 2 m2 m−2), which can be attributed to the lack of canopy closure observed in all plots. No significant differences were found in the understory LAI values across soil drainage classes. Total LAI (overstory LAI plus understory LAI) values were weakly correlated with the vegetation indices. The LAI values estimated using Landsat data were typically half of the values estimated on the ground. Significant correlations were observed between the vegetation indices (SR and NDVI) and stand and site factors, suggesting that the satellite-derived indices were more related to the stand biophysical parameters than to in situ LAI estimates.


Author(s):  
Lida Andalibi ◽  
Ardavan Ghorbani ◽  
Mehdi Moameri ◽  
Zeinab Hazbavi ◽  
Arne Nothdurft ◽  
...  

The leaf area index (LAI) is an important vegetation biophysical index that provides broad information on the dynamic behavior of ecosystems productivity and related climate, topography, and edaphic impacts. The spatio-temporal changes of LAI were assessed throughout Ardabil Province, a host of relevant plant communities within the critical ecoregion of a semi-arid climate. In a comparative study, novel data from Google Earth Engine- GEE was tested against traditional ENVI measures to provide LAI estimations. Besides, it is of important practical significance for institutional networks to quantitatively and accurately estimate LAI at large areas in a short time and using appropriate baseline vegetation indices. Therefore, LAI was characterized for ecoregions of Ardabil Province using remote sensing indices extracted from Landsat 8 Operational Land Imager (OLI), including Enhanced Vegetation Index calculated in GEE (EVIG) and ENVI5.3 software (EVIE), as well as Normalized Difference Vegetation Index estimated in ENVI5.3 software (NDVIE). Besides, a new field measurement method, i.e., the LaiPen LP 100 portable device (LP 100), was used to evaluate the accuracy of the derived indices. Accordingly, the LAI was measured on June and July 2020 in 822 ground points distributed in 16 different ecoregions-sub ecoregions having various Plant Functional Types (PFTs) of the shrub, bush, and tree. The analyses revealed heterogeneous spatial and temporal variability in vegetation indices and LAIs within and between ecoregions. The mean (standard deviation) value of EVIG, EVIE, and NDVIE at Province scale yielded 1.1 (0.41), 2.20 (0.78), and 3.00 (1.01), respectively in June, and 0.67 (0.37), 0.80 (0.63), and 1.88 (1.23), in that respect in July. The highest mean values of EVIG-LAI, EVIE-LAI, and NDVIE-LAI in June are found in Meshginshahr (1.40), Meshginshahr (2.80), and Hir (4.33) ecoregions and in July are found in Andabil ecoregion respectively with values of 1.23, 1.5, and 3.64. The lowest mean values of EVIG-LAI, EVIE-LAI, and NDVIE-LAI in June were observed for Kowsar (0.67), Meshginshahr (1.8), and Neur (2.70), ecoregions and in July were for Bilesavar ecoregion respectively with values of 0.31, 0.31, and 0.81. High correlation and determination coefficients (r>0.83 and R2>0.68) between LP 100 and remote sensing derived LAI were observed in all three PFTs (except for NDVIE-LAI in June with r=0.56 and R2=0.31). On average, all three examined LAI measures tended to underestimation compared to LP 100-LAI (r>0.42). The findings of the present study can be promising for effective monitoring and proper management of vegetation and land use in Ardabil Province and other similar areas.


2021 ◽  
Vol 13 (8) ◽  
pp. 1427
Author(s):  
Kasturi Devi Kanniah ◽  
Chuen Siang Kang ◽  
Sahadev Sharma ◽  
A. Aldrie Amir

Mangrove is classified as an important ecosystem along the shorelines of tropical and subtropical landmasses, which are being degraded at an alarming rate despite numerous international treaties having been agreed. Iskandar Malaysia (IM) is a fast-growing economic region in southern Peninsular Malaysia, where three Ramsar Sites are located. Since the beginning of the 21st century (2000–2019), a total loss of 2907.29 ha of mangrove area has been estimated based on medium-high resolution remote sensing data. This corresponds to an annual loss rate of 1.12%, which is higher than the world mangrove depletion rate. The causes of mangrove loss were identified as land conversion to urban, plantations, and aquaculture activities, where large mangrove areas were shattered into many smaller patches. Fragmentation analysis over the mangrove area shows a reduction in the mean patch size (from 105 ha to 27 ha) and an increase in the number of mangrove patches (130 to 402), edge, and shape complexity, where smaller and isolated mangrove patches were found to be related to the rapid development of IM region. The Moderate Resolution Imaging Spectro-radiometer (MODIS) Leaf Area Index (LAI) and Gross Primary Productivity (GPP) products were used to inspect the impact of fragmentation on the mangrove ecosystem process. The mean LAI and GPP of mangrove areas that had not undergone any land cover changes over the years showed an increase from 3.03 to 3.55 (LAI) and 5.81 g C m−2 to 6.73 g C m−2 (GPP), highlighting the ability of the mangrove forest to assimilate CO2 when it is not disturbed. Similarly, GPP also increased over the gained areas (from 1.88 g C m−2 to 2.78 g C m−2). Meanwhile, areas that lost mangroves, but replaced them with oil palm, had decreased mean LAI from 2.99 to 2.62. In fragmented mangrove patches an increase in GPP was recorded, and this could be due to the smaller patches (<9 ha) and their edge effects where abundance of solar radiation along the edges of the patches may increase productivity. The impact on GPP due to fragmentation is found to rely on the type of land transformation and patch characteristics (size, edge, and shape complexity). The preservation of mangrove forests in a rapidly developing region such as IM is vital to ensure ecosystem, ecology, environment, and biodiversity conservation, in addition to providing economical revenue and supporting human activities.


Author(s):  
Aldo Restu Agi Prananda ◽  
Muhammad Kamal ◽  
Denny Wijaya Kusuma

Sign in / Sign up

Export Citation Format

Share Document