scholarly journals Leaf Area of Overstory and Understory in Pine Plantations in the Flatwoods

2010 ◽  
Vol 34 (4) ◽  
pp. 154-160 ◽  
Author(s):  
Alicia Peduzzi ◽  
H. Lee Allen ◽  
Randolph H. Wynne

Abstract Leaf area index (LAI) was measured in summer and winter for the overstory and understory in 7- and 10-year-old loblolly and slash pine plantations on poorly drained, somewhat poorly drained, and moderately well-drained soils. LAI and vegetation indices (simple ratio [SR], normalized difference vegetation index [NDVI], vegetation index, and enhanced vegetation index) were also calculated using Landsat imagery. LAI values observed for the overstory were low in most of the plots (around 2 m2 m−2 in slash pine and around 3 m2 m−2 in loblolly pine), whereas the understory LAI was very high (around 2 m2 m−2), which can be attributed to the lack of canopy closure observed in all plots. No significant differences were found in the understory LAI values across soil drainage classes. Total LAI (overstory LAI plus understory LAI) values were weakly correlated with the vegetation indices. The LAI values estimated using Landsat data were typically half of the values estimated on the ground. Significant correlations were observed between the vegetation indices (SR and NDVI) and stand and site factors, suggesting that the satellite-derived indices were more related to the stand biophysical parameters than to in situ LAI estimates.

2021 ◽  
Vol 13 (6) ◽  
pp. 1140
Author(s):  
Stephen M. Kinane ◽  
Cristian R. Montes ◽  
Timothy J. Albaugh ◽  
Deepak R. Mishra

Vegetation indices calculated from remotely sensed satellite imagery are commonly used within empirically derived models to estimate leaf area index in loblolly pine plantations in the southeastern United States. The data used to parameterize the models typically come with observation errors, resulting in biased parameters. The objective of this study was to quantify and reduce the effects of observation errors on a leaf area index (LAI) estimation model using imagery from Landsat 5 TM and 7 ETM+ and over 1500 multitemporal measurements from a Li-Cor 2000 Plant Canopy Analyzer. Study data comes from a 16 quarter 1 ha plot with 1667 trees per hectare (2 m × 3 m spacing) fertilization and irrigation research site with re-measurements taken between 1992 and 2004. Using error-in-variable methods, we evaluated multiple vegetation indices, calculated errors associated with their observations, and corrected for them in the modeling process. We found that the normalized difference moisture index provided the best correlation with below canopy LAI measurements (76.4%). A nonlinear model that accounts for the nutritional status of the stand was found to provide the best estimates of LAI, with a root mean square error of 0.418. The analysis in this research provides a more extensive evaluation of common vegetation indices used to estimate LAI in loblolly pine plantations and a modeling framework that extends beyond the typical linear model. The proposed model provides a simple to use form allowing forest practitioners to evaluate LAI development and its uncertainty in historic pine plantations in a spatial and temporal context.


2006 ◽  
Vol 36 (6) ◽  
pp. 1587-1596 ◽  
Author(s):  
Francisco J Flores ◽  
H Lee Allen ◽  
Heather M Cheshire ◽  
Jerry M Davis ◽  
Montserrat Fuentes ◽  
...  

The relationship between leaf area index (LAI) of loblolly pine plantations and the broadband simple ratio (SR) vegetation index calculated from Landsat 7 Enhanced Thematic Mapper Plus (ETM+) data was examined. An equation was derived to estimate LAI from readily available Landsat 7 ETM+ data. The equation developed to predict LAI with Landsat 7 ETM+ data was tested with ground LAI measurements taken in 12 plots. The root mean square error of prediction was 0.29, an error of approximately 14% in prediction. The ability of Landsat 7 ETM+ data to consistently estimate SR over time was tested using two scenes acquired on different dates during the winter (December to early March). Comparison between the two images on a pixel-by-pixel basis showed that approximately 96% of the pixels had a difference of <0.5 units of SR (approximately 0.3 units of LAI). When the comparison was made on a stand-by-stand basis (average stand SR), a maximum difference of 0.2 units of SR (approximately 0.12 units of LAI) was found. These results suggest that stand LAI of loblolly pine plantations can be accurately estimated from readily available remote sensing data and provide an opportunity to apply the findings from ecophysiological studies in field plots to forest management decisions at an operational scale.


Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 222 ◽  
Author(s):  
Christine Blinn ◽  
Matthew House ◽  
Randolph Wynne ◽  
Valerie Thomas ◽  
Thomas Fox ◽  
...  

Leaf area index (LAI) is an important biophysical parameter used to monitor, model, and manage loblolly pine plantations across the southeastern United States. Landsat provides forest scientists and managers the ability to obtain accurate and timely LAI estimates. The objective of this study was to investigate the relationship between loblolly pine LAI measured in situ (at both leaf area minimum and maximum through two growing seasons at two geographically disparate study areas) and vegetation indices calculated using data from Landsat 7 (ETM+) and Landsat 8 (OLI). Sub-objectives included examination of the impact of georegistration accuracy, comparison of top-of-atmosphere and surface reflectance, development of a new empirical model for the species and region, and comparison of the new empirical model with the current operational standard. Permanent plots for the collection of ground LAI measurements were established at two locations near Appomattox, Virginia and Tuscaloosa, Alabama in 2013 and 2014, respectively. Each plot is thirty by thirty meters in size and is located at least thirty meters from a stand boundary. Plot LAI measurements were collected twice a year using the LI-COR LAI-2200 Plant Canopy Analyzer. Ground measurements were used as dependent variables in ordinary least squares regressions with ETM+ and OLI-derived vegetation indices. We conclude that accurately-located ground LAI estimates at minimum and maximum LAI in loblolly pine stands can be combined and modeled with Landsat-derived vegetation indices using surface reflectance, particularly simple ratio (SR) and normalized difference moisture index (NDMI), across sites and sensors. The best resulting model (LAI = −0.00212 + 0.3329SR) appears not to saturate through an LAI of 5 and is an improvement over the current operational standard for loblolly pine monitoring, modeling, and management in this ecologically and economically important region.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6732
Author(s):  
Haixia Qi ◽  
Bingyu Zhu ◽  
Zeyu Wu ◽  
Yu Liang ◽  
Jianwen Li ◽  
...  

Leaf area index (LAI) is used to predict crop yield, and unmanned aerial vehicles (UAVs) provide new ways to monitor LAI. In this study, we used a fixed-wing UAV with multispectral cameras for remote sensing monitoring. We conducted field experiments with two peanut varieties at different planting densities to estimate LAI from multispectral images and establish a high-precision LAI prediction model. We used eight vegetation indices (VIs) and developed simple regression and artificial neural network (BPN) models for LAI and spectral VIs. The empirical model was calibrated to estimate peanut LAI, and the best model was selected from the coefficient of determination and root mean square error. The red (660 nm) and near-infrared (790 nm) bands effectively predicted peanut LAI, and LAI increased with planting density. The predictive accuracy of the multiple regression model was higher than that of the single linear regression models, and the correlations between Modified Red-Edge Simple Ratio Index (MSR), Ratio Vegetation Index (RVI), Normalized Difference Vegetation Index (NDVI), and LAI were higher than the other indices. The combined VI BPN model was more accurate than the single VI BPN model, and the BPN model accuracy was higher. Planting density affects peanut LAI, and reflectance-based vegetation indices can help predict LAI.


Author(s):  
D. Ratha ◽  
D. Mandal ◽  
S. Dey ◽  
A. Bhattacharya ◽  
A. Frery ◽  
...  

Abstract. In this paper, we present two radar vegetation indices for full-pol and compact-pol SAR data, respectively. Both are derived using the notion of a geodesic distance between observation and well-known scattering models available in the literature. While the full-pol version depends on a generalized volume scattering model, the compact-pol version uses the ideal depolariser to model the randomness in the vegetation. We have utilized the RADARSAT Constellation Mission (RCM) time-series data from the SAMPVEX16-MB campaign in the Manitoba region of Canada for comparing and assessing the indices in terms of the change in the biophysical parameters as well. The compact-pol data for comparison is simulated from the full-pol RCM time series. Both the indices show better performance at correlating with biophysical parameters such as Plant Area Index (PAI) and Volumetric Water Content (VWC) for wheat and soybean crops, in comparison to the state-of-art Radar Vegetation Index (RVI) of Kim and van Zyl. These indices are timely for the upcoming release of the data from the RCM, which will provide data in both full and compact-pol modes, aimed at better crop monitoring from space.


2019 ◽  
Vol 12 (1) ◽  
pp. 16 ◽  
Author(s):  
Naichen Xing ◽  
Wenjiang Huang ◽  
Qiaoyun Xie ◽  
Yue Shi ◽  
Huichun Ye ◽  
...  

Leaf area index (LAI) is a key parameter in plant growth monitoring. For several decades, vegetation indices-based empirical method has been widely-accepted in LAI retrieval. A growing number of spectral indices have been proposed to tailor LAI estimations, however, saturation effect has long been an obstacle. In this paper, we classify the selected 14 vegetation indices into five groups according to their characteristics. In this study, we proposed a new index for LAI retrieval-transformed triangular vegetation index (TTVI), which replaces NIR and red bands of triangular vegetation index (TVI) into NIR and red-edge bands. All fifteen indices were calculated and analyzed with both hyperspectral and multispectral data. Best-fit models and k-fold cross-validation were conducted. The results showed that TTVI performed the best predictive power of LAI for both hyperspectral and multispectral data, and mitigated the saturation effect. The R2 and RMSE values were 0.60, 1.12; 0.59, 1.15, respectively. Besides, TTVI showed high estimation accuracy for sparse (LAI < 4) and dense canopies (LAI > 4). Our study provided the value of the Red-edge bands of the Sentinel-2 satellite sensors in crop LAI retrieval, and demonstrated that the new index TTVI is applicable to inverse LAI for both low-to-moderate and moderate-to-high vegetation cover.


Author(s):  
Lijuan Wang ◽  
Guimin Zhang ◽  
Hui Lin ◽  
Liang Liang ◽  
Zheng Niu

The Normalized Difference Vegetation Index (NDVI) is widely used for Leaf Area Index (LAI) estimation. It is well documented that the NDVI is extremely subject to the saturation problem when LAI reaches a high value. A new multi-angular vegetation index, the Hotspot-darkspot Difference Vegetation Index (HDVI) is proposed to estimate the high density LAI. The HDVI, defined as the difference between the hot and dark spot NDVI, relative to the dark spot NDVI, was proposed based on the Analytical two-layer Canopy Reflectance Model (ACRM) model outputs. This index is validated using both in situ experimental data in wheat and data from the multi-angular optical Compact High-Resolution Imaging Spectrometer (CHRIS) satellite. Both indices, the Hotspot-Darkspot Index (HDS) and the NDVI were also selected to analyze the relationship with LAI, and were compared with new index HDVI. The results show that HDVI is an appropriate proxy of LAI with higher determination coefficients (R2) for both the data from the in situ experiment (R2=0.7342, RMSE=0.0205) and the CHRIS data (R2=0.7749, RMSE=0.1013). Our results demonstrate that HDVI can make better the occurrence of saturation limits with the information of multi-angular observation, and is more appropriate for estimating LAI than either HDS or NDVI at high LAI values. Although the new index needs further evaluation, it also has the potential under the condition of dense canopies. It provides the effective improvement to the NDVI and other vegetation indices that are based on the red and NIR spectral bands.


2009 ◽  
Vol 6 (5) ◽  
pp. 5783-5809 ◽  
Author(s):  
H. H. Bulcock ◽  
G. P. W. Jewitt

Abstract. The use of remote sensing technology as a tool to estimate leaf area index (LAI) for use in estimating canopy interception is described in this paper. The establishment of commercial forestry plantations in natural grassland vegetation, results in increased transpiration and interception which in turn, results in a streamflow reduction. Methods to quantify this impact typically require LAI as an input into the various equations and process models that are applied. Remote sensing provides a potential solution to effectively monitor the spatial and temporal variability of LAI. This is illustrated using Hyperion hyperspectral imagery and three vegetation indices, namely the normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI) and Vogelmann index 1 to estimate LAI in a catchment afforested with Eucalyptus, Pinus and Acacia genera in the KwaZulu-Natal midlands of South Africa. Of the three vegetation indices used in this study, it was found that the Vogelmann index 1 was the most robust index with an R2 and root mean square error (RMSE) values of 0.7 and 0.3 respectively. However, both NDVI and SAVI could be used to estimate the LAI of 12 year old Pinus patula accurately. If the interception component is to be quantified independently, estimates of maximum storage capacity and canopy interception are required. Thus, the spatial distribution of LAI in the catchment is used to estimate maximum canopy storage capacity in the study area.


2021 ◽  
Vol 13 (15) ◽  
pp. 2879
Author(s):  
Lida Andalibi ◽  
Ardavan Ghorbani ◽  
Mehdi Moameri ◽  
Zeinab Hazbavi ◽  
Arne Nothdurft ◽  
...  

The leaf area index (LAI) is an important vegetation biophysical index that provides broad information on the dynamic behavior of an ecosystem’s productivity and related climate, topography, and edaphic impacts. The spatiotemporal changes of LAI were assessed throughout Ardabil Province—a host of relevant plant communities within the critical ecoregion of a semi-arid climate. In a comparative study, novel data from Google Earth Engine (GEE) was tested against traditional ENVI measures to provide LAI estimations. Moreover, it is of important practical significance for institutional networks to quantitatively and accurately estimate LAI, at large areas in a short time, and using appropriate baseline vegetation indices. Therefore, LAI was characterized for ecoregions of Ardabil Province using remote sensing indices extracted from Landsat 8 Operational Land Imager (OLI), including the Enhanced Vegetation Index calculated in GEE (EVIG) and ENVI5.3 software (EVIE), as well as the Normalized Difference Vegetation Index estimated in ENVI5.3 software (NDVIE). Moreover, a new field measurement method, i.e., the LaiPen LP 100 portable device (LP 100), was used to evaluate the accuracy of the derived indices. Accordingly, the LAI was measured in June and July 2020, in 822 ground points distributed in 16 different ecoregions-sub ecoregions having various plant functional types (PFTs) of the shrub, bush, and tree. The analyses revealed heterogeneous spatial and temporal variability in vegetation indices and LAIs within and between ecoregions. The mean (standard deviation) value of EVIG, EVIE, and NDVIE at a province scale yielded 1.1 (0.41), 2.20 (0.78), and 3.00 (1.01), respectively in June, and 0.67 (0.37), 0.80 (0.63), and 1.88 (1.23), respectively, in July. The highest mean values of EVIG-LAI, EVIE-LAI, and NDVIE-LAI in June are found in Meshginshahr (1.40), Meshginshahr (2.80), and Hir (4.33) ecoregions and in July are found in Andabil ecoregion respectively with values of 1.23, 1.5, and 3.64. The lowest mean values of EVIG-LAI, EVIE-LAI, and NDVIE-LAI in June were observed for Kowsar (0.67), Meshginshahr (1.8), and Neur (2.70) ecoregions, and in July, the Bilesavar ecoregion, respectively, with values of 0.31, 0.31, and 0.81. High correlation and determination coefficients (r > 0.83 and R2 > 0.68) between LP 100 and remote sensing derived LAI were observed in all three PFTs (except for NDVIE-LAI in June with r = 0.56 and R2 = 0.31). On average, all three examined LAI measures tended to underestimate compared to LP 100-LAI (r > 0.42). The findings of the present study could be promising for effective monitoring and proper management of vegetation and land use in the Ardabil Province and other similar areas.


Sign in / Sign up

Export Citation Format

Share Document