scholarly journals Degradation of Ecosystem Services and Deforestation in Landscapes With and Without Incentive-Based Forest Conservation in the Ecuadorian Amazon

Forests ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 442 ◽  
Author(s):  
Paúl Eguiguren ◽  
Richard Fischer ◽  
Sven Günter

Anthropogenic activities such as logging or forest conversion into agricultural lands are affecting Ecuadorian Amazon forests. To foster private and communal conservation activities an economic incentive-based conservation program (IFC) called Socio Bosque was established. Existing analyses related to conservation strategies are mainly focused on deforestation; while degradation and the role of IFC to safeguard ecosystem services are still scarce. Further on, there is a lack of landscape-level studies taking into account potential side effects of IFC on different forest types. Therefore we assessed ecosystem services (carbon stocks, timber volume) and species richness in landscapes with and without IFC. Additionally, we evaluated potential side-effects of IFC in adjacent forest types; hypothesizing potential leakage effects of IFC. Finally, we tested if deforestation rates decreased after IFC implementation. Forest inventories were conducted in 72 plots across eight landscapes in the Ecuadorian Central Amazon with and without IFC. Plots were randomly selected within three forest types (old-growth, logged and successional forests). In each plot all individuals with a diameter at breast height greater than 10 cm were measured. Old-growth forests in general showed higher carbon stocks, timber volume and species richness, and no significant differences between old-growth forests in IFC and non-IFC landscapes were found. Logged forests had 32% less above-ground carbon (AGC) and timber volume in comparison to old-growth forests. Surprisingly, logged forests near IFC presented higher AGC stocks than logged forests in non-IFC landscapes, indicating positive side-effects of IFC. Successional forests contain 56% to 64% of AGC, total carbon and timber volume, in comparison to old-growth forests, and 82% to 87% in comparison to logged forests. Therefore, successional forests could play an important role for restoration and should receive more attention in national climate change policies. Finally, after IFC implementation deforestation rate decreased on parish level. Our study presents scientific evidence of IFC contribution to conserving ecosystem services and species richness. In addition IFC could help indirectly to reduce degradation effects attributed to logging, indicating potential compatibility of conservation aims with forest activities at a landscape level.

2008 ◽  
Vol 38 (12) ◽  
pp. 3098-3111 ◽  
Author(s):  
Allen Banner ◽  
Philip LePage

We sampled second-growth forests ranging in age from 28 to 98 years and compared them with old-growth forests to quantify rates of terrestrial vegetation recovery following harvesting on the northcentral coast of British Columbia. Species richness approximately doubles, while Simpson’s index of diversity increases from 0.81 to 0.91 from young to old forests. Nonmetric multidimensional scaling ordinations showed differentiation, with some overlap, of old-growth and second-growth forests and a fairly strong correlation of stand age with plot scores, driven by plant species presence and cover. Vegetation succession following logging disturbance is driven primarily by predisturbance species composition; most species found in the young forests are present in old forests and the higher species richness typical of old growth is largely due to the establishment of additional cryptogam and herb species of low cover and constancy. Significantly higher cover of shrub, herb, and bryophyte species differentiates old forests from second-growth forests. Forests 41–100 years old average 63%–73% similarity (depending on site type) to old-growth forests based on species presence–absence and 53%–58% similarity based on species cover. The scarcity of western redcedar ( Thuja plicata Donn ex D. Don) in second-growth stands is of particular concern because of the high ecological, cultural, and economic importance of this tree species.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Cindy Q. Tang ◽  
Peng-Bin Han ◽  
Shuaifeng Li ◽  
Li-Qin Shen ◽  
Diao-Shun Huang ◽  
...  

Abstract Background Schima genus of Theaceae is confined to subtropics and tropics of South, East and Southeast Asia. Thirteen species of Schima are distributed in subtropical China. Many of them appear as dominant canopy species in the subtropical forests. To date, Schima species richness distribution patterns of China have remained unknown. Meanwhile, there has been a longtime debate as to whether forests dominated by Schima species are early or late successional forests. We aim to clarify Schima species richness patterns and these species’ roles in the forest succession and regeneration dynamics of the subtropical ecosystem in Yunnan Province, China. Method We mapped Schima species richness distribution patterns in China. Based on 71 vegetation plots, we analyzed forest characteristics, population structure, and regeneration dynamics of Schima species in Yunnan. Results Yunnan was found to harbor the greatest richness and the highest rarity-weighted richness of Schima species in the subtropical regions of China. We classified five primary and six secondary forest types containing Schima species as one of dominants. Yunnan had the high floristic diversity and varying stand structure of forests containing Schima species. The Schima species studied generally had a sporadic regeneration type and a long life-span. Four species (Schima argentea, Schima villosa, Schima sinensis, Schima sericans) were shade-intolerant. But three species (Schima noronhae, Schima khasiana and Schima wallichii) were considered as bi-modal type species having shade-intolerant and shade-tolerant traits. Schima noronhae was seen to be a top dominant in late successional forests, while S. wallichii was found as a top-dominant in early or middle or late successional forests. S. khasiana, Schima villosa, Schima sinensis usually appeared as a top dominant in early or middle successional secondary forests, though they also presented as a second dominant in late-successional forests. Schima argentea and Schima sericans dominated only in the early or middle/seral successional forests. Schima species’ regeneration establishment depended mainly on forest canopy gap formation through moderate human and natural disturbances. Conclusions Yunnan has high species richness and rarity-weighted richness of Schima. Both moderate human and natural disturbances have provided regeneration niches for Schima species. Some of the Schima species studied as a second dominant (rare as the top-dominant) present in the late-successional forests. Some of them are more often as the top-dominant in early or middle successional forests, where as time goes by the dominance of Schima species would be replaced by their associated dominant taxa such as Castanopsis species.


2008 ◽  
Vol 23 (2) ◽  
pp. 106-112 ◽  
Author(s):  
John P. Caouette ◽  
Eugene J. DeGayner

Abstract The forest classification and mapping system currently used in managing the Tongass National Forest (NF) is based largely on an economic forest measure, net board foot volume per acre. Although useful for timber economic modeling, this forest measure poorly differentiates old-growth forest types in a way that is meaningful to ecological and social concerns. In 2005, we published an article presenting a proposed tree size and tree density mapping model for the Tongass NF. We claimed the model would provide better information on the structural patterns in old-growth forests than did the current mapping models based on net board foot volume per acre. We also stated that further testing of our proposed model is required before it can be fully integrated into forest management plans and landscape analysis. In this article, we used independent field data to evaluate our proposed tree size and density model and better define its accuracy. Results showed differences among mapping classes similar to differences observed in the development stages of the model. Results also showed mapping accuracy estimates between 60 and 80%. We used the model in a forest management application by comparing the representation of old-growth forest types within a landscape to the representation within a management-defined subset of that landscape.


1996 ◽  
Vol 26 (2) ◽  
pp. 255-265 ◽  
Author(s):  
Edward G. Schreiner ◽  
Kirsten A. Krueger ◽  
Douglas B. Houston ◽  
Patricia J. Happe

The relationship between native ungulates (mainly Roosevelt elk, Cervuselaphus L.) and the occurrence of three patch types in an old-growth (220- to 260-year-old) Sitka spruce (Piceasitchensis (Bong.) Carrière)–western hemlock (Tsugaheterophylla (Raf.) Sarg.) temperate coniferous rain forest was investigated on the South Fork Hoh River in Olympic National Park. The distribution, frequency, and size of two understory patches (grass, moss) and patches where shrubs had escaped herbivory (refugia) were sampled along transects. Vegetation standing crop, percent cover, species richness, and equitability along transects were compared with conditions in two 8-year-old 0.5-ha ungulate exclosures. Ungulate herbivory profoundly affected the distribution and abundance of understory patch types. Grass-dominated patches disappeared following 8 years of protection from ungulate herbivory. Ungulates maintained a reduced standing crop, increased forb species richness, and determined the distribution, morphology, and reproductive performance of several shrub species. There is clearly a dynamic relationship between patch type, tree fall, and ungulate herbivory in these old-growth forests. Our results show that ungulate herbivory is a driving force shaping vegetation patterns in coastal coniferous forests.


2011 ◽  
Vol 27 (03) ◽  
pp. 323-326 ◽  
Author(s):  
Gregory R. Goldsmith ◽  
Liza S. Comita ◽  
Siew Chin Chua

Secondary forests occupy a growing portion of the tropical landscape mosaic due to regeneration on abandoned pastures and other disturbed sites (Asneret al. 2009). Tropical secondary forests and degraded old-growth forests now account for more than half of the world's tropical forests (Chazdon 2003), and provide critical ecosystem services (Brown & Lugo 1990, Guariguata & Ostertag 2001).


Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 252 ◽  
Author(s):  
Maxence Martin ◽  
Cornélia Krause ◽  
Nicole J. Fenton ◽  
Hubert Morin

Research Highlights: Radial growth patterns of trees growing in old-growth boreal forests in eastern Canada can be grouped into a small number of simple patterns that are specific to different old-growth forest types or successional stages. Background and Objectives: Identifying the main radial growth trends in old-growth forests could help to develop silvicultural treatments that mimic the complex dynamics of old-growth forests. Therefore, this study aimed to identify the main radial growth patterns and determine how their frequencies change during forest succession in old-growth forests, focusing on boreal landscapes in eastern Canada. Materials and Methods: We used dendrochronological data sampled from 21 old-growth stands in the province of Quebec, Canada. Tree-ring chronologies were simplified into chronologies of equal length to retain only primary growth trends. We used k-means clustering to identify individual growth patterns and the difference in growth-pattern frequency within the studied stands. We then used non-parametric analyses of variance to compare tree or stand characteristics among the clusters. Results: We identified six different growth patterns corresponding to four old-growth forest types, from stands at the canopy breakup stage to true old-growth stands (i.e., when all the pioneer cohort had disappeared). Secondary disturbances of low or moderate severity drove these growth patterns. Overall, the growth patterns were relatively simple and could be generally separated into two main phases (e.g., a phase of limited radial increment size due to juvenile suppression and a phase of increased radial increment size following a growth release). Conclusions: The complexity of old-growth forest dynamics was observed mainly at the stand level, not at the tree level. The growth patterns observed in true old-growth forests were similar to those observed following partial or stem-selection cuts in boreal stands; thus, these silvicultural treatments may be effective in mimicking old-growth dynamics.


2012 ◽  
Vol 266 ◽  
pp. 108-114 ◽  
Author(s):  
Coeli M. Hoover ◽  
William B. Leak ◽  
Brian G. Keel

Sign in / Sign up

Export Citation Format

Share Document