timber volume
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 25)

H-INDEX

18
(FIVE YEARS 2)

Silva Fennica ◽  
2022 ◽  
Vol 56 (1) ◽  
Author(s):  
Lennart Noordermeer ◽  
Erik Næsset ◽  
Terje Gobakken

Newly developed positioning systems in cut-to-length harvesters enable georeferencing of individual trees with submeter accuracy. Together with detailed tree measurements recorded during processing of the tree, georeferenced harvester data are emerging as a valuable tool for forest inventory. Previous studies have shown that harvester data can be linked to airborne laser scanner (ALS) data to estimate a range of forest attributes. However, there is little empirical evidence of the benefits of improved positioning accuracy of harvester data. The two objectives of this study were to (1) assess the accuracy of timber volume estimation using harvester data and ALS data acquired with different scanners over multiple years and (2) assess how harvester positioning errors affect merchantable timber volume predicted and estimated from ALS data. We used harvester data from 33 commercial logging operations, comprising 93 731 harvested stems georeferenced with sub-meter accuracy, as plot-level training data in an enhanced area-based inventory approach. By randomly altering the tree positions in Monte Carlo simulations, we assessed how prediction and estimation errors were influenced by different combinations of simulated positioning errors and grid cell sizes. We simulated positioning errors of 1, 2, …, 15 m and used grid cells of 100, 200, 300 and 400 m. Values of root mean square errors obtained for cell-level predictions of timber volume differed significantly for the different grid cell sizes. The use of larger grid cells resulted in a greater accuracy of timber volume predictions, which were also less affected by positioning errors. Accuracies of timber volume estimates at logging operation level decreased significantly with increasing levels of positioning error. The results highlight the benefit of accurate positioning of harvester data in forest inventory applications. Further, the results indicate that when estimating timber volume from ALS data and inaccurately positioned harvester data, larger grid cells are beneficial.2


2021 ◽  
Vol 502 ◽  
pp. 119714
Author(s):  
Arne Nothdurft ◽  
Christoph Gollob ◽  
Ralf Kraßnitzer ◽  
Gernot Erber ◽  
Tim Ritter ◽  
...  

2021 ◽  
Vol 78 (2) ◽  
Author(s):  
Johannes Rahlf ◽  
Marius Hauglin ◽  
Rasmus Astrup ◽  
Johannes Breidenbach

Abstract Key message Large-scale forest resource maps based on national forest inventory (NFI) data and airborne laser scanning may facilitate synergies between NFIs and forest management inventories (FMIs). A comparison of models used in such a NFI-based map and a FMI indicate that NFI-based maps can directly be used in FMIs to estimate timber volume of mature spruce forests. Context Traditionally, FMIs and NFIs have been separate activities. The increasing availability of detailed NFI-based forest resource maps provides the possibility to eliminate or reduce the need of field sample plot measurements in FMIs if their accuracy is similar. Aims We aim to (1) compare a timber volume model used in a NFI-based map and models used in a FMI, and (2) evaluate utilizing additional local sample plots in the model of the NFI-based map. Methods Accuracies of timber volume estimates using models from an existing NFI-based map and a FMI were compared at plot and stand level. Results Estimates from the NFI-based map were similar to or more accurate than the FMI. The addition of local plots to the modeling data did not clearly improve the model of the NFI-based map. Conclusion The comparison indicates that NFI-based maps can directly be used in FMIs for timber volume estimation in mature spruce stands, leading to potentially large cost savings.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 284
Author(s):  
Ebru Bilici

With the advancement of technology in forestry, the utilization of advanced machines in forest operations has been increasing in the last decades. Due to their high operating costs, it is crucial to select the right machinery, which is mostly done by using productivity analysis. In this study, a productivity estimation model was developed in order to determine the timber volume cut per unit time for a feller-buncher. The Weibull distribution method was used to develop the productivity model. In the study, the model of the theoretical (estimated) volume distributions obtained with the Weibull probability density function was generated. It was found that the c value was 1.96 and the b value was 0.58 (i.e., b is the scale parameter, and c is the shape parameter). The model indicated that the frequency of the volume data had moved away from 0 as the shape parameter of the Weibull distribution increased. Thus, it was revealed that the shape parameter gives preliminary information about the distribution of the volume frequency. The consistency of the measured timber volume with the estimated timber volume strongly indicated that this approach can be effectively used by decision makers as a key tool to predict the productivity of a feller-buncher used in harvesting operations.


Author(s):  
Lucie Vítková ◽  
Dominik Saladin ◽  
Marc Hanewinkel

Abstract For the first time, an economic analysis of a fully simulated forest transformation process from even-aged to uneven-aged stand structure using natural regeneration was performed using an individual tree growth simulator. A comparison to a ‘business as usual’ management approach (i.e. age-class scenario) was also made. Norway spruce (Picea abies (L.) Karst.)-dominated forests of different ages were selected for the simulation: forest at thinning stage (52 years; hereafter, ‘younger stand’) and a mature stand (95 years) to explore different starting points for the transformation. The harvested and remaining stand volume showed only little fluctuation over the course of the simulation period in the case of the transformation (uneven-aged) scenario. The age-class scenario, on the other hand, showed peaks and drops in the timber volume. The land expectation values at the end of transformation were higher (i = 1 or 2 per cent) or equal (i = 3 per cent) to those of the age-class scenario for the younger stand. The transformation of younger forests appears to be economically interesting (under interest rates above 2 per cent) as the early revenues of more intensive thinnings achieve an equilibrium growing stock well below the potential maximum growing stock of an even-aged stand. This suggests transformation management to be economically efficient under the given silvicultural and economic conditions. The transformation of mature stands was found to be less economically viable due to the lower holding values for the transformation (uneven-aged) scenario compared with the age-class scenario. However, the holding values of the younger stand were higher for all interest rates compared with the age-class scenario. This study concludes that transformation (uneven-aged) scenario yielded more economically viable silvicultural approach (in the case of younger forests) and a steadier trend in harvested and remaining timber volume showing no major fluctuations. Transformation approach also forms a better foundation where other ecosystem services can be built.


Author(s):  
Victor V. Ogurtsov ◽  
◽  
Elena V. Kargina ◽  
Irina S. Matveeva

This work is the final in the series of studies related to the issue of sorting logs by thickness while forming the sawing batches with optimal selection of sawlogs by diameter groups. In previous works, mathematical models linking the characteristics of logs and their cutting processes with the timber volume output and the sawmill profitability were obtained. Algorithms and programs for simulation studies of the sawn timber production process with reproduction of random variability of sizes and shapes of sawn logs, as well as their random displacement relative to the center of the sawing pattern were developed. Profitability of sawmill production was chosen as the criterion of optimality, the volume output of timber was used as a competing indicator. Fractional sorting of logs by thickness is used as a controllable optimizable variable, while ellipticity, curvature, and timber displacement from the center of the sawing pattern are treated as random interfering factors. Considering the log as a set of short sections threaded on a curved axis, we imitated its sawing process with random characteristics of shape and sizes. As a result, the change patterns of sawing production efficiency were determined while varying thickness, curvature, ellipticity and displacement of logs from the center of the sawing pattern. It was found that when sawing logs with an optimal sawing pattern, the simultaneous influence of random factors of log shape and accuracy of its location weakens the dependence of the timber volume output on the fractional sorting of logs according to the law close to the geometric summation of individual influences. Factors with large influence practically absorb factors with a smaller influence. The log curvature dominates among them. For suboptimal sawing patterns with the simultaneous influence of the three considered factors, the timber volume output is practically independent of the fractional sorting of logs by thickness. When sawing logs with shape defects by suboptimal sawing patterns on equipment with an imperfect basing system, sorting logs by thickness as a way to increase the volume output of sawn timber does not make sense. Random variation of log shape and accuracy of its centering, as well as the deviation of the parameters of sawing patterns from the optimal, causes a decrease in the optimal fractionality of selection of logs by thickness from 20 to 30 mm. Moreover, the greater the number of characteristics of log shape and its basing deviates from the ideal values and the greater these deviations, the more active the optimum fractional sorting of logs by thickness shifts to 3 or more even diameters. When preparing sawn material for mass sawing using modern technologies and equipment with rigid sawing patterns, it is advisable to sort logs by thickness through 2 even diameters. At random simultaneous variation of ellipticity of cross-sections of logs with an average value of 6 mm, their curvature with an average value of 0.25 % and displacement relative to the center of sawing pattern with an average value of 10 mm the optimum is sorting of sawn raw material through 3 even diameters.


2020 ◽  
Vol 21 (12) ◽  
Author(s):  
Ronggo Sadono ◽  
DJOKO SOEPRIJADI ◽  
ARI SUSANTI ◽  
PANDU YUDHA ADI PUTRA WIRABUANA ◽  
Jeriels Matatula

The availability information about species composition and growth performance of mangrove forest are required to determine the best strategies for sustainable ecosystems management, particularly at the coastal area. This study aimed to quantify the number of species composition and growth performance of mangrove stand that established at the coast of Tanah Merah, East Nusa Tenggara. Forest inventory was conducted using nine permanent sampling plot which evenly distributed in every zonation of mangrove. Data were collected in each life stage of vegetation, namely seedling, sapling, pole, and tree. Several parameters were calculated to describe species composition, including important value index, richness, heterogeneity, and evenness. Four indicators were selected to assess the growth performance of mangrove stand in this location, i.e. mean diameter, average height, timber volume, and wood biomass. Results demonstrated the species composition of mangrove forest consisted of 9 different plants. The highest important value index of seedling was noted in A. marina (124.09) while the greatest important value index of sapling, pole, and tree were recorded in S. alba by approximately 86.57, 130.01, 118.58 respectively. This location had low level of richness (1.22) and heterogeneity (0.88) but having high level of evenness (0.99). The mean diameter and height of mangrove stand in this area was 15.2 cm and 8.3 m with an average timber volume and wood biomass around 90.7 m3 ha-1 and 65.1 Mg ha-1 respectively. Based on these findings, we suggested to conduct enrichment planting for improving plant biodiversity of mangrove forest at the coast of Tanah Merah.


Sign in / Sign up

Export Citation Format

Share Document