scholarly journals Effects of Bird Traits on Seed Dispersal of Endangered Taxus chinensis (Pilger) Rehd. with Ex-Situ and In-Situ Conservation

Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 790
Author(s):  
Li ◽  
Wang ◽  
Li ◽  
Yi ◽  
Yan ◽  
...  

Biodiversity is rapidly decreasing worldwide. Its great importance has been attached to conservation through in-situ and ex-situ management. Animal-mediated seed dispersal is an important ecological process, linking the threatened plants and animal partners in ex-situ habitats, and in turn affecting tree conservation. However, how bird traits affect seed dispersal within in-situ and ex-situ conservation still remains unclear. Here, we aim to answer this question. We tested whether bird traits affect seed deposition and seedling recruitment. Our results showed that 19 bird species foraged and removed Taxus chinensis (Pilger) Rehd. seeds across botanical gardens (ex-situ) and natural reserves (in-situ). The seed dispersal pattern of T. chinensis varied in the stages of seed removal and seed deposition, but showed no significant difference in the seedling recruitment stage. This showed that bird morphological and behavioral traits affected seed dispersal through the different contributions of varying bird species. Large birds and their high visitation frequency played a central role in seed removal patterns. The frequency of post-foraging habitat use was the most important factor determining the role of birds in seed deposition and the following seedling recruitment. Urocissa erythrorhyncha and Chloropsis hardwickii played the role of keystone species in seed deposition and seedling recruitment, respectively. Our results highlight the importance of bird traits in facilitating the seed dispersal of trees within in-situ and ex-situ conservation, which should be considered in future forest conservation and management.

Oryx ◽  
2011 ◽  
Vol 46 (1) ◽  
pp. 18-23 ◽  
Author(s):  
Diana J. Pritchard ◽  
John E. Fa ◽  
Sara Oldfield ◽  
Stuart R. Harrop

AbstractIn situ conservation is central to contemporary global biodiversity protection and is the predominant emphasis of international regulation and funding strategies. Ex situ approaches, in contrast, have been relegated to a subsidiary role and their direct contributions to conservation have been limited. We draw on a variety of sources to make the case for an enhanced role for ex situ conservation. We note the advances occurring within institutions specializing in ex situ conservation and stress that, although much remains to be done, many constraints are being addressed. We argue that the evidence of increasing extinction rates, exacerbated by climate change, challenges the wisdom of a heavy dependence on in situ strategies and necessitates increased development of ex situ approaches. A number of different techniques that enable species and their habitats to survive should now be explored. These could build on the experience of management systems that have already demonstrated the effective integration of in situ and ex situ techniques and hybrid approaches. For organizations specializing in ex situ conservation to become more effective, however, they will require tangible support from the institutions of global biodiversity governance. Resistance is anticipated because in situ conservation is entrenched through powerful groups and organizations that exert influence on global conservation policy and facilitate the flow of funding. The chasm that has traditionally divided in situ and ex situ approaches may diminish as approaches are combined. Moreover, the relentless loss of the ‘wild’ may soon render the in situ / ex situ distinction misleading, or even obsolete.


2018 ◽  
Vol 26 (2) ◽  
pp. 47-69
Author(s):  
Hyeyeon Im ◽  
Minkyung Jung ◽  
Kyungsook Ahn ◽  
Ki Hyun Ryu

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 638
Author(s):  
Marcelo B. Medeiros ◽  
José F. M. Valls ◽  
Aluana G. Abreu ◽  
Gustavo Heiden ◽  
Suelma Ribeiro-Silva ◽  
...  

This study presents the status of ex situ and in situ conservation for the crop wild relatives of rice, potato, sweet potato, and finger millet in Brazil, and the subsequent germplasm collection expeditions. This research is part of a global initiative entitled “Adapting Agriculture to Climate Change: Collecting, Protecting, and Preparing Crop Wild Relatives” supported by the Global Crop Diversity Trust. Species of the primary, secondary, and tertiary gene pools with occurrences reported in Brazil were included: Oryza alta Swallen, O. grandiglumis (Döll) Prod., O. latifolia Desv., O. glumaepatula Steud., Eleusine tristachya (Lam.) Lam., E. indica (L.) Gaertn., Solanum commersonii Dunal, S. chacoense Bitter, Ipomoea grandifolia (Dammer) O’Donell, I. ramosissima (Poir.) Choisy, I. tiliacea (Willd.) Choisy, I. triloba L., and I. cynanchifolia Meisn. The status of the ex situ and in situ conservation of each taxon was assessed using the gap analysis methodology, and the results were used to plan 16 germplasm collection expeditions. Seeds of the collected material were evaluated for viability, and the protocols for seed germination and cryopreservation were tested. The final conservation score, resulting from the gap analysis and including the average of the ex situ and in situ scores, resulted in a classification of medium priority of conservation for all the species, with the exception of I. grandifolia (high priority). The total accessions collected (174) almost doubled the total accessions of these crop wild relatives incorporated in Embrapa’s ex situ conservation system prior to 2015. In addition, accessions for practically absent species were collected for the ex situ conservation system, such as Ipomoea species, Eleusine indica, and Solanum chacoense. The methods used for dormancy breaking and low temperature conservation for the Oryza, Eleusine, and Ipomoea species were promising for the incorporation of accessions in the respective gene banks. The results show the importance of efforts to collect and conserve ex situ crop wild relatives in Brazil based on previous gap analysis. The complementarity with the in situ strategy also appears to be very promising in the country.


2021 ◽  
pp. 117548
Author(s):  
Mengfan Luo ◽  
Hongyu Zhou ◽  
Peng Zhou ◽  
Leiduo Lai ◽  
Wen Liu ◽  
...  

Crop Science ◽  
2006 ◽  
Vol 46 (1) ◽  
pp. 428-436 ◽  
Author(s):  
Elizabeth B. Rice ◽  
Margaret E. Smith ◽  
Sharon E. Mitchell ◽  
Stephen Kresovich

Author(s):  
Roland Bourdeix ◽  
Steve Adkins ◽  
Vincent Johnson ◽  
Lalith Perera ◽  
Sisunandar

Author(s):  
Audrey Denvir ◽  
Jeannine Cavender-Bares ◽  
Antonio González-Rodríguez

Gardens and horticulturists play an increasingly important role in plant conservation, both in situ and ex situ. Integrated research and conservation of species intends to work across fields to connect science to conservation practice by engaging actors from different sectors, including gardens. The case of integrated conservation of Quercus brandegeei, a microendemic oak species in Baja California Sur, Mexico, is presented as an example of a collaboration between gardens and academic researchers to create a species-specific conservation plan that incorporates horticultural knowledge.


Genetika ◽  
2004 ◽  
Vol 36 (3) ◽  
pp. 221-227
Author(s):  
Jelena Aleksic ◽  
Sasa Orlovic

Principles of the conservation of genetic resources of elms (Ulmus spp) do not differ fundamentally from the general principles accepted for the conservation of genetic resources of other common Noble Hardwoods. Efficient conservation can best be achieved through appropriate combination of in situ and ex situ methods, which have distinct advantages. Besides that, ex situ conservation is employed when emergency measures are needed for rare endangered populations and when populations are too small to be managed in situ (e.g. risks of genetic drift and inbreeding). The aim of our research is ex situ conservation of genetic resources of field elm {Ulmus minor Mill) and European white elm (Ulmus laevis Pall) through establishment of field genebanks. Sampling was conducted in one population of field elm and one population of white elm. Plant material (buds) from 8 trees of field elm and 10 trees of white elm was used for in vitro production of clones. Obtained clones will be used for establishment of field genebanks on the experimental estate of the Institute of Lowland Forestry and Environment.


2000 ◽  
Vol 14 (2) ◽  
pp. 382-385 ◽  
Author(s):  
L. M. Clayton ◽  
E. J. Milner‐Gulland ◽  
D. W. Sinaga ◽  
A. H. Mustari

Sign in / Sign up

Export Citation Format

Share Document