scholarly journals Soil Microbiome Composition along the Natural Norway Spruce Forest Life Cycle

Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 410
Author(s):  
Michal Choma ◽  
Pavel Šamonil ◽  
Eva Kaštovská ◽  
Jiří Bárta ◽  
Karolina Tahovská ◽  
...  

Stand-replacing disturbances are a key element of the Norway spruce (Picea abies) forest life cycle. While the effect of a natural disturbance regime on forest physiognomy, spatial structure and pedocomplexity was well described in the literature, its impact on the microbiome, a crucial soil component that mediates nutrient cycling and stand productivity, remains largely unknown. For this purpose, we conducted research on a chronosequence of sites representing the post-disturbance development of a primeval Norway spruce forest in the Calimani Mts., Romania. The sites were selected along a gradient of duration from 16 to 160 years that ranges from ecosystem regeneration phases of recently disturbed open gaps to old-growth forest stands. Based on DNA amplicon sequencing, we followed bacterial and fungal community composition separately in organic, upper mineral and spodic horizons of present Podzol soils. We observed that the canopy opening and subsequent expansion of the grass-dominated understorey increased soil N availability and soil pH, which was reflected in enlarged bacterial abundance and diversity, namely due to the contribution of copiotrophic bacteria that prefer nutrient-richer conditions. The fungal community composition was affected by the disturbance as well but, contrary to our expectations, with no obvious effect on the relative abundance of ectomycorrhizal fungi. Once the mature stand was re-established, the N availability was reduced, the pH gradually decreased and the original old-growth forest microbial community dominated by acidotolerant oligotrophs recovered. The effect of the disturbance and forest regeneration was most evident in organic horizons, while the manifestation of these events was weaker and delayed in deeper soil horizons.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jorge Domínguez ◽  
Manuel Aira ◽  
Keith A. Crandall ◽  
Marcos Pérez-Losada

AbstractWastewater treatment plants produce hundreds of million tons of sewage sludge every year all over the world. Vermicomposting is well established worldwide and has been successful at processing sewage sludge, which can contribute to alleviate the severe environmental problems caused by its disposal. Here, we utilized 16S and ITS rRNA high-throughput sequencing to characterize bacterial and fungal community composition and structure during the gut- and cast-associated processes (GAP and CAP, respectively) of vermicomposting of sewage sludge. Bacterial and fungal communities of earthworm casts were mainly composed of microbial taxa not found in the sewage sludge; thus most of the bacterial (96%) and fungal (91%) taxa in the sewage sludge were eliminated during vermicomposting, mainly through the GAP. Upon completion of GAP and during CAP, modified microbial communities undergo a succession process leading to more diverse microbiotas than those found in sewage sludge. Consequently, bacterial and fungal community composition changed significantly during vermicomposting. Vermicomposting of sewage resulted in a stable and rich microbial community with potential biostimulant properties that may aid plant growth. Our results support the use of vermicompost derived from sewage sludge for sustainable agricultural practices, if heavy metals or other pollutants are under legislation limits or adequately treated.


2016 ◽  
Vol 178 ◽  
pp. 76-86 ◽  
Author(s):  
Shurong Liu ◽  
Michael Herbst ◽  
Roland Bol ◽  
Nina Gottselig ◽  
Thomas Pütz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document